4.8 Article

Effect of interaction among the three time scales on the propagation characteristics of coupled waves in a piezoelectric semiconductor rod

期刊

NANO ENERGY
卷 68, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2019.104345

关键词

Piezoelectric semiconductor; Coupling waves; Carrier drift and diffusion; Energy conversion rate; Piezotronics devices

资金

  1. National Natural Science Foundation of China [11972164, 11672113, 51435006]
  2. Key Laboratory Project of Hubei Province [2016CFA073]

向作者/读者索取更多资源

Based on small fluctuation of carrier concentration, a linearly-algebra equation on velocities of coupled waves in a piezoelectric semiconductor rod is established and two wave velocities together with the attenuation effects are obtained hard on the heels. Two kinds of coupling waves were distinguished by polarization-vector analysis (modal identification): One is the generalized acoustic wave with coupling between electromechanical fields and charge carriers, and the other is an electric-field/carriers interaction wave without coupling to mechanical quantities. There exist three time-scales in the system, respectively, corresponding to the vibration frequency of a coupled wave and the conductivity frequency of carrier drift and the frequency related to carrier diffusion. Effect of interaction among these three time scales on the propagation characteristics of two coupling waves are studied in detail. Analysis on the attenuation effects caused by wave-particle drag shows that these two coupling waves can propagate well only in the micro-scale or nano-scale, but decay to a very weak extent after a relatively-large size. An energy conversion rate is put forward to define an optimal operating frequency range for a coupling wave to have strong interaction between mechanical fields/piezoelectric-potential and carrier motions. The results obtained will provide some guidance for the further theoretical analysis of wave propagating in piezoelectric semiconductors and practical application and design of piezotronics devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据