4.6 Article

An Engineered Infected Epidermis Model for In Vitro Study of the Skin's Pro-Inflammatory Response

期刊

MICROMACHINES
卷 11, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/mi11020227

关键词

epidermis; 3D bioprinting; wound modeling; infection; pro-inflammatory response

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Canada Foundation for Innovation (CFI)
  3. Canadian Institutes for Health Research (CIHR)

向作者/读者索取更多资源

Wound infection is a major clinical challenge that can significantly delay the healing process, can create pain, and requires prolonged hospital stays. Pre-clinical research to evaluate new drugs normally involves animals. However, ethical concerns, cost, and the challenges associated with interspecies variation remain major obstacles. Tissue engineering enables the development of in vitro human skin models for drug testing. However, existing engineered skin models are representative of healthy human skin and its normal functions. This paper presents a functional infected epidermis model that consists of a multilayer epidermis structure formed at an air-liquid interface on a hydrogel matrix and a three-dimensionally (3D) printed vascular-like network. The function of the engineered epidermis is evaluated by the expression of the terminal differentiation marker, filaggrin, and the barrier function of the epidermis model using the electrical resistance and permeability across the epidermal layer. The results showed that the multilayer structure enhances the electrical resistance by 40% and decreased the drug permeation by 16.9% in the epidermis model compared to the monolayer cell culture on gelatin. We infect the model with Escherichia coli to study the inflammatory response of keratinocytes by measuring the expression level of pro-inflammatory cytokines (interleukin 1 beta and tumor necrosis factor alpha). After 24 h of exposure to Escherichia coli, the level of IL-1 beta and TNF-alpha in control samples were 125 +/- 78 and 920 +/- 187 pg/mL respectively, while in infected samples, they were 1429 +/- 101 and 2155.5 +/- 279 pg/mL respectively. However, in ciprofloxacin-treated samples the levels of IL-1 beta and TNF-alpha without significant difference with respect to the control reached to 246 +/- 87 and 1141.5 +/- 97 pg/mL respectively. The robust fabrication procedure and functionality of this model suggest that the model has great potential for modeling wound infections and drug testing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据