4.4 Article

The factorization problem in Jackiw-Teitelboim gravity

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 2, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP02(2020)177

关键词

2D Gravity; AdS-CFT Correspondence; Black Holes

资金

  1. NSFCAREER [PHY-1352084]
  2. Simons Foundation It-from-Qubit Collaboration
  3. MIT Department of Physics

向作者/读者索取更多资源

In this note we study the 1 + 1 dimensional Jackiw-Teitelboim gravity in Lorentzian signature, explicitly constructing the gauge-invariant classical phase space and the quantum Hilbert space and Hamiltonian. We also semiclassically compute the Hartle-Hawking wave function in two different bases of this Hilbert space. We then use these results to illustrate the gravitational version of the factorization problem of AdS/CFT: the Hilbert space of the two-boundary system tensor-factorizes on the CFT side, which appears to be in tension with the existence of gauge constraints in the bulk. In this model the tension is acute: we argue that JT gravity is a sensible quantum theory, based on a well-defined Lorentzian bulk path integral, which has no CFT dual. In bulk language, it has wormholes but it does not have black hole microstates. It does however give some hint as to what could be added to rectify these issues, and we give an example of how this works using the SYK model. Finally we suggest that similar comments should apply to pure Einstein gravity in 2 + 1 dimensions, which we'd then conclude also cannot have a CFT dual, consistent with the results of Maloney and Witten.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据