4.6 Article

Narrowband-Absorption-Type Organic Photodetectors for the Far-Red Range Based on Fullerene-Free Bulk Heterojunctions

期刊

ADVANCED OPTICAL MATERIALS
卷 8, 期 8, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.201902056

关键词

far-red photodetectors; narrowband organic photodetectors; narrowband-absorption photodetectors; nonfullerene acceptors

资金

  1. National Natural Science Foundation of China [61805166, 61950410759, 61750110517]
  2. Natural Science Foundation of Jiangsu Province [BK20170345]
  3. Collaborative Innovation Center of Suzhou Nano Science Technology
  4. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  5. 111 Project
  6. Joint International Research Laboratory of Carbon-Based Functional Materials and Devices

向作者/读者索取更多资源

Spectrally-selective photodetection via organic semiconductors manifesting narrowband absorption (NBA photodetection) is highly attractive for emerging applications that require ultrathin, lightweight, and low-cost solutions. While successful over mainstream color bands, NBA photodetectors have struggled so far to meet the functional and/or performance demands at longer wavelengths, importantly in the far-red (700-750 nm), a range relevant to diverse applications in analytical biology, medical diagnostics, remote sensing, etc. In consideration of the potential of a nonfullerene-acceptor route to address this challenge, the narrowband photodetection capabilities of SBDTIC, a recently-developed benzodithiophene-based acceptor with narrowband absorption in the far-red, are explored. Two bulk-heterojunction NBA configurations are considered, in which SBDTIC is combined with a donor either absorbing also in the far-red, or transparent through the visible. It is found that the latter configuration provides superior narrowband functionality, with peak detectivity of 1.42 x 10(13) Jones and spectral width of 141 nm-the highest detectivity to date for NBA far-red-selective photodetectors, and the smallest spectral width of all solution-processed implementations. In self-powered operation, such photodetectors additionally present a quasilinear response over a photocurrent range of least four orders of magnitude, and respond in the microsecond range, further evidencing the suitability of this approach to address the wealth of target applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据