4.7 Article

Hybrid Chlorophyll-a Algorithm for Assessing Trophic States of a Tropical Brazilian Reservoir Based on MSI/Sentinel-2 Data

期刊

REMOTE SENSING
卷 12, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/rs12010040

关键词

hybrid algorithm; chlorophyll-a; tropical reservoir

资金

  1. CAPES Foundation/PROEX
  2. FAPESP [2008/56252-0]

向作者/读者索取更多资源

Using remote sensing for monitoring trophic states of inland waters relies on the calibration of chlorophyll-a (chl-a) bio-optical algorithms. One of the main limiting factors of calibrating those algorithms is that they cannot accurately cope with the wide chl-a concentration ranges in optically complex waters subject to different trophic states. Thus, this study proposes an optical hybrid chl-a algorithm (OHA), which is a combined framework of algorithms for specific chl-a concentration ranges. The study area is Ibitinga Reservoir characterized by high spatiotemporal variability of chl-a concentrations (3-1000 mg/m(3)). We took the following steps to address this issue: (1) we defined optical classes of specific chl-a concentration ranges using Spectral Angle Mapper (SAM); (2) we calibrated/validated chl-a bio-optical algorithms for each trophic class using simulated Sentinel-2 MSI (Multispectral Instrument) bands; (3) and we applied a decision tree classifier in MSI/Sentinel-2 image to detect the optical classes and to switch to the suitable algorithm for the given class. The results showed that three optical classes represent different ranges of chl-a concentration: class 1 varies 2.89-22.83 mg/m(3), class 2 varies 19.51-87.63 mg/m(3), and class 3 varies 75.89-938.97 mg/m(3). The best algorithms for trophic classes 1, 2, and 3 are the 3-band (R-2 = 0.78; MAPE - Mean Absolute Percentage Error = 34.36%), slope (R-2 = 0.93; MAPE = 23.35%), and 2-band (R-2 = 0.98; MAPE = 20.12%), respectively. The decision tree classifier showed an accuracy of 95% for detecting SAM's optical trophic classes. The overall performance of OHA was satisfactory (R-2 = 0.98; MAPE = 26.33%) using in situ data but reduced in the Sentinel-2 image (R-2 = 0.42; MAPE = 28.32%) due to the temporal gap between matchups and the variability in reservoir hydrodynamics. In summary, OHA proved to be a viable method for estimating chl-a concentration in Ibitinga Reservoir and the extension of this framework allowed a more precise chl-a estimate in eutrophic inland waters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据