4.7 Article

A Study of Interaction Effects and Quantum Berezinskii- Kosterlitz-Thouless Transition in the Kitaev Chain

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-020-57796-z

关键词

-

向作者/读者索取更多资源

The physics of the topological state of matter is the second revolution in quantum mechanics. We study the effect of interactions on the topological quantum phase transition and the quantum Berezinskii-Kosterlitz-Thouless (QBKT) transition in topological state of a quantum many-body condensed matter system. We predict a topological quantum phase transition from topological superconducting phase to an insulating phase for the interacting Kitaev chain. We observe interesting behaviour from the results of renormalization group study on the topological superconducting phase. We derive the renormalization group (RG) equation for QBKT through different routes with a few exact solutions along with the physical explanations, wherein we find the existence of two new important emergent phases apart from the two conventional phases of this model Hamiltonian. We also present results of a length-scale dependent study to predict asymptotic freedom like behaviour of the system. We do rigorous quantum field theoretical renormalization group calculations to solve this problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据