4.7 Article

Cold plasma treatment to release dormancy and improve growth in grape buds: a promising alternative to natural chilling and rest breaking chemicals

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-020-59097-x

关键词

-

资金

  1. King Abdul Aziz City for Science and Technology (KACST) [37-146]

向作者/读者索取更多资源

Winter dormancy of temperate zone perennial plant species is commonly released by chilling temperature. If the duration of the cold weather is not adequate, plant growth becomes disorganized leading to reduced growth, spread out flowering and fruit maturation and often reduced yield. In mild-winter regions, growers commonly resort to spraying their trees with chemicals such as hydrogen cyanamide to compensate for the lack of chilling to ensure good growth and yield. Although effective, most of these chemicals are highly toxic; unfortunately, there is no effective and environmentally friendly alternative which can be used to release dormancy. In this work, we present a cold plasma treatment-based method which can effectively release the dormancy of grape buds. We have found that exposing grape buds to plasma provides improvement of several growth parameters including higher, faster and more synchronous budbreak and more vigorous vegetative growth, comparatively similar to or better than natural chilling. Biochemical analyses of bud tissue suggest that the plasma treatment triggered a marked transient oxidative stress as indicated by the increase in the concentrations of free proline, malondialdehyde (MDA) and hydrogen peroxide (H2O2). Proline appears to have played a key role; as a compatible osmolyte, it may have protected cellular structures against free radicals and as a signaling molecule, it may have induced the events leading to dormancy release. We anticipate that our work will provide a starting point for the development of novel plasma-based tools and methods to treat dormant plants. The plasma treatment method may allow higher agricultural production in several regions of the world at risk of becoming marginal for the cultivation of certain crops due to global warming.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据