4.8 Article

Effect of Ligand Electronics on the Reversible Catalytic Hydrogenation of CO2 to Formic Acid Using Ruthenium Polyhydride Complexes: A Thermodynamic and Kinetic Study

期刊

ACS CATALYSIS
卷 10, 期 5, 页码 2990-2998

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.0c00404

关键词

reversible CO2 hydrogenation; ruthenium polyhydrides; linear free-energy relationships; CO2 insertion kinetics; CO2 insertion thermodynamics

资金

  1. Max Planck Society

向作者/读者索取更多资源

Hydrogenation of CO2 to formic acid or formates is often carried out using catalysts of the type H4Ru(PR3)(3) (1). These catalysts are also active for the reverse reaction, i.e., the decomposition of formic acid to H-2 and CO2. While numerous catalysts have been synthesized for reactions in both directions, the factors controlling the elementary steps of the catalytic cycle remain poorly understood. In this work, we synthesize a series of compounds of type H4Ru(P(C6H4R)(3))(3) containing both electron-donating and electron-withdrawing groups and analyze their influence on the kinetic and thermodynamic parameters of CO2 insertion and deinsertion. The data are correlated with the catalytic performance of the complexes through linear free-energy relationships. The results show that formic acid dissociation from the catalyst is rate-determining during CO2 hydrogenation, while deinsertion is critical for the decomposition reaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据