4.8 Article

Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-14056-7

关键词

-

资金

  1. Science Challenge Project [TZ2016004]
  2. National Natural Science Foundation of China [21671140, 21771128]
  3. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

The preparation of subnanoporous covalent-organic-framework (COF) membranes with high performance for ion/molecule sieving still remains a great challenge. In addition to the difficulties in fabricating large-area COF membranes, the main reason is that the pore size of 2D COFs is much larger than that of most gas molecules and/or ions. It is urgently required to further narrow their pore sizes to meet different separation demands. Herein, we report a simple and scalable way to grow large-area, pliable, free-standing COF membranes via a one-step route at organic-organic interface. The pore sizes of the membranes can be adjusted from >1nm to sub-nm scale by changing the stacking mode of COF layers from AA to AB stacking. The obtained AB stacking COF membrane composed of highly-ordered nanoflakes is demonstrated to have narrow aperture (similar to 0.6nm), uniform pore distribution and shows good potential in organic solvent nanofiltration, water treatment and gas separation. Fabrication of large scale and defect free covalent organic framework (COF) membranes with pores small enough for gas sieving remains challenging. Here, the authors report a scalable fabrication method to grow large area defect free COF membranes and to tune the pore size in the sub-nm region by adjusting the stacking modes of the COF layers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据