4.8 Article

Fate and transport of sulfidated nano zerovalent iron (S-nZVI): A field study

期刊

WATER RESEARCH
卷 170, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2019.115319

关键词

Nano zerovalent iron; Sul fidation; Dithionite; Subsurface transport; Field application; Characterization

资金

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada

向作者/读者索取更多资源

Treatment of nano zerovalent iron (nZVI) with lower valent forms of sulfur compounds (sulfidation) has the potential to increase the selectivity and reactivity of nZVI with target contaminants and to decrease inter-particle aggregation for improving its mobility. These developments help in addressing some of the long-standing challenges associated with nZVI-based remediation treatments and are of great interest for in situ applications. Herein we report results from a field-scale project conducted at a contaminated site. Sulfidated nZVI (S-nZVI) was prepared on site by first synthesizing carboxymethyl cellulose (CMC) stabilized nZVI with sodium borohydride as a reductant and then sulfidating the nZVI suspension by adding sodium dithionite. Transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDS) of CMC-S-nZVI, from synthesis barrels, confirms the presence of both discrete spherical nZVI-like particles (similar to 90 nm) as well as larger irregular structures (similar to 500 nm) comprising of iron sulfides. This CMC-S-nZVI suspension was gravity fed into a sandy material and monitored through multiple multi-level monitoring wells. Samples collected from upstream and downstream wells suggest very good radial and vertical iron distribution. TEM-EDS analysis from the recovered well samples also indicates the presence of both nZVI-like particles as well as the larger flake-like structures, similar to those found in the injected CMC-S-nZVI suspension. This study shows that S-nZVI stabilized with CMC can be safely synthesized on site and is highly mobile and stable in the subsurface, demonstrating for the first time the field applicability of S-nZVI. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据