4.7 Article

Translocating subtropical forest soils to a warmer region alters microbial communities and increases the decomposition of mineral-associated organic carbon

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 142, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2020.107707

关键词

Climate warming; Soil organic carbon fractions; Microbial community; Soil enzyme; Subtropical forest

资金

  1. National Natural Science Foundation of China [41977287, 41991285, 31670487]
  2. Science and Technology Programs of Guangzhou City [201903010021]
  3. Science and Technology Innovation Project of Guangdong Province Forestry [2019KJCX023]
  4. Guangdong Hundred Talent Program
  5. Guangdong Thousand Talent Program
  6. Guangdong Ten Thousand Talent Program

向作者/读者索取更多资源

It is not clear how soil organic carbon (SOC) and its related microbial processes respond to climate warming in subtropical forest, which limits our ability to predict the response and feedback of such forests to future warming. Here, we translocated a forest microcosm from a high-elevation site to a low-elevation site (600 m-30 m a.s.l.) in a subtropical forest, to study the responses of SOC fractions, microbial communities and enzyme activities to increases in soil temperature (ca. 1.69 degrees C). Results showed that translocation to a warmer region significantly decreased the total SOC content by an average of 21.1% after three years of soil warming. Warming non-significantly decreased the particulate organic C (POC) and microbial C (MBC) content by 15.7% and 15.2%, respectively, and increased the light fraction organic C (LFOC) and dissolved organic C (DOC) content by 15.5% and 2.3%, respectively. By contrast, warming significantly decreased the <53 mu m fraction organic C (N-POC, -15.3%) and heavy fraction organic C (HFOC, -14.8%) content. Warming significantly decreased the relative abundance of total bacteria (-2.7%), G(+) bacteria (-6.1%), G(-) bacteria (-6.6%) and actinomycetes (-10.8%), but increased the relative abundance of fungi (+22%). The oxidase and mass-specific oxidase activities were significantly increased by 32-70% in the warming soils. The decline in the N-POC was highly correlated to the increases in the relative abundance of fungi, the ratio of fungal to bacterial biomass (F:B), oxidase and mass-specific oxidase activities. Our results suggest that climate warming may increase the potential for fungal decomposition of mineral-associated organic C by increasing oxidase activities, leading to greater C losses in the subtropical forest than previously estimated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据