4.7 Article

Total vulnerability of the littoral zone to climate change-driven natural hazards in north Brittany, France

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 706, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.135963

关键词

Climate change; Sea-level rise; Coastal erosion; Vulnerability index; Natural hazards; France

资金

  1. Region Bretagne
  2. Pays de Saint-Brieuc
  3. Saint-Brieuc Armor Agglomeration
  4. Commune de Saint-Rene Hillion

向作者/读者索取更多资源

Current worldwide projections of sea-level rise show a staggering increase in water level of up to 2 m by 2100 owing to global warming exacerbated by anthropogenically induced climate change. While amplified rates of sea-level rise is an immense hazard to coastal communities, storm surges are expected to increase in intensity and frequency making it an equally significant threat to coastal populations. In France, these hazards are not uncommon with records of extreme tempests every thousand years in the Holocene. Despite these recurring devastating events, in the Bay of Saint-Brieuc, Brittany, legislated laws for coastal management do not entirely focus on protecting littoral zones from such calamities. 130,739 people are concentrated in 21 municipalities with major cities located at close proximity to the shoreline with numerous socio-economic activities, which increases the vulnerability of the coastal population and infrastructures; thus, affirming the indispensable need of a thorough vulnerability assessment. Here, we conduct a mechanistic appraisal of the vulnerability of the bay considering thirteen parameters within three governing sub-systems that demonstrate the multidimensional dynamics in these municipalities. In the occasion of an extreme climatic event, our results of total vulnerability show risks in the sub-systems highlighting erosional processes due to augmented hydrodynamics, socioeconomic and administrative vulnerabilities associated with anthropogenic development. Light municipalities of the bay portray moderate to very high vulnerability and the remaining exhibits a lower risk; however, not devoid of high vulnerabilities for certain sub-systems. We posit that a more accurate fit for predicting the total vulnerability of the region can be achieved by exclusively integrating physical-natural and administrative subsystem vulnerabilities. We propose generic but requisite recommendations for Integrated Coastal Zone Management such as surveillance of urban development along the coast, implementation of coastal defense systems and appropriate industrial corridors to attenuate and dispose hazardous refuse. (C) 2019 Elsevier BM. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据