4.7 Article

Study of quinoa plant residues as a way to produce energy through thermogravimetric analysis and indexes estimation

期刊

RENEWABLE ENERGY
卷 146, 期 -, 页码 2224-2233

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2019.08.056

关键词

Biomass; Char; Husk; Thermal indexes; Thermogravimetry; Quinoa

向作者/读者索取更多资源

Quinoa is a pseudo-cereal employed to provide nutrition and sustenance for a long time. Currently, the consumption of seeds of this plant is increasing. The seed are the only nutritionally part, which implies that both the husks like the rest of biomass represent a residue vaguely studied. Authors had studied the thermal behavior of these quinoa inedible parts. Fuel properties, biomass composition and DTG profiles were done for an oxidative atmosphere under different heating rates in the same way that several characteristic combustion indexes were estimated. Also, DTG profiles for a non-oxidative environment together with the characterization of the char obtained were showed. Results denoted that quinoa biomass presented a more suitable nature for combustion process compared with the husks. Furthermore, combustion DTG profiles showed two different stages: devolatilization and ignition. The maximum combustion weight loss value (20.63%/min) was achieved for biomass under a 40 K/min rate. DTG profiles under inert atmosphere evidenced two weight loss stages clearly influenced by the cellulose and lignin content. Once again, biomass was the one with the better behavior instead of the husk for this pyrolysis process. Biomass which had good values in terms of yield (26.02%) and heating value (15.41 MJ/kg). (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Biotechnology & Applied Microbiology

Comparison of the culture and harvesting of Chlorella vulgaris and Tetradesmus obliquus for the removal of pharmaceuticals from water

C. Escapa, R. N. Coimbra, S. Paniagua, A. I. Garcia, M. Otero

JOURNAL OF APPLIED PHYCOLOGY (2017)

Article Green & Sustainable Science & Technology

Effect of waste organic amendments on Populus sp biomass production and thermal characteristics

S. Paniagua, L. Escudero, C. Escapa, R. N. Coimbra, M. Otero, L. P. Calvo

RENEWABLE ENERGY (2016)

Article Biotechnology & Applied Microbiology

Comparative assessment of diclofenac removal from water by different microalgae strains

C. Escapa, R. N. Coimbra, S. Paniagua, A. I. Garcia, M. Otero

ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS (2016)

Article Environmental Sciences

Paracetamol and salicylic acid removal from contaminated water by microalgae

C. Escapa, R. N. Coimbra, S. Paniagua, A. I. Garcia, M. Otero

JOURNAL OF ENVIRONMENTAL MANAGEMENT (2017)

Article Thermodynamics

Chlorella sorokiniana thermogravimetric analysis and combustion characteristic indexes estimation

Sergio Paniagua, Luis Fernando Calvo, Carla Escapa, Ricardo N. Coimbra, Marta Otero, Ana I. Garcia

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY (2018)

Article Environmental Sciences

Valorization of Microalgae Biomass by Its Use for the Removal of Paracetamol from Contaminated Water

Carla Escapa, Ricardo N. Coimbra, Cristina Nuevo, Samuel Vega, Sergio Paniagua, Ana I. Garcia, Luis F. Calvo, Marta Otero

Article Environmental Sciences

Effect of Applying Organic Amendments on the Pyrolytic Behavior of a Poplar Energy Crop

S. Paniagua, L. Escudero, R. N. Coimbra, C. Escapa, M. Otero, L. F. Calvo

WASTE AND BIOMASS VALORIZATION (2018)

Article Energy & Fuels

Biofuel consisting of wheat straw-poplar wood blends: thermogravimetric studies and combustion characteristic indexes estimation

Sergio Paniagua, Ana Garcia-Perez, Luis F. Calvo

BIOMASS CONVERSION AND BIOREFINERY (2019)

Article Energy & Fuels

Bioenergy derived from an organically fertilized poplar plot: overall TGA and index estimation study for combustion, gasification, and pyrolysis processes

Sergio Paniagua, Alba Prado-Guerra, Ana Isabel Garcia, Luis Fernando Calvo

BIOMASS CONVERSION AND BIOREFINERY (2019)

Article Green & Sustainable Science & Technology

Emissions from residential pellet combustion of an invasive acacia species

E. D. Vicente, A. M. Vicente, M. Evtyugina, R. Carvalho, L. A. C. Tarelho, S. Paniagua, T. Nunes, M. Otero, L. P. Calvo, C. Alves

RENEWABLE ENERGY (2019)

Article Green & Sustainable Science & Technology

Pyrolysis technology for Cortaderia selloana invasive species. Prospects in the biomass energy sector

Alejandro Perez, Begona Ruiz, Enrique Fuente, Luis Fernando Calvo, Sergio Paniagua

Summary: The aim of the research was to study the potential of Cortaderia selloana through a pyrolytic process to help reduce its expansion in Iberian Peninsula ecosystems.

RENEWABLE ENERGY (2021)

Article Chemistry, Analytical

Employment of conventional and flash pyrolysis for biomass wastes from the textile industry with sustainable prospects

Begona Ruiz, Enrique Fuente, Alejandro Perez, Luis Taboada-Ruiz, Juan Marcos Sanz, Luis Fernando Calvo, Sergio Paniagua

Summary: The textile industry is highly polluting, generating millions of tons of waste annually. This study focused on the energy potential of three types of industrial textile waste: CW, SFW, and W, using conventional and flash pyrolysis at different temperatures. The results showed that bio-oil yields were highest in low-temperature flash pyrolysis and conventional pyrolysis, with the highest heating value obtained from SFW waste. The bio-oils obtained contained aromatic and non-aromatic compounds, with high levels of phenols and benzenes in low-temperature pyrolysis and polycyclic aromatic hydrocarbons in high-temperature pyrolysis.

JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS (2023)

Article Education, Scientific Disciplines

Study of Binqui. An application for smartphones based on the problems without data methodology to reduce stress levels and improve academic performance of chemical engineering students

Sergio Paniagua, Raul Herrero, Ana Isabel Garcia-Perez, Luis Fernando Calvo

EDUCATION FOR CHEMICAL ENGINEERS (2019)

Article Green & Sustainable Science & Technology

Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States

Cameron Bracken, Nathalie Voisin, Casey D. Burleyson, Allison M. Campbell, Z. Jason Hou, Daniel Broman

Summary: This study presents a methodology and dataset for examining compound wind and solar energy droughts, as well as the first standardized benchmark of energy droughts across the Continental United States (CONUS) for a 2020 infrastructure. The results show that compound wind and solar droughts have distinct spatial and temporal patterns across the CONUS, and the characteristics of energy droughts are regional. The study also finds that compound high load events occur more often during compound wind and solar droughts than expected.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Optimal configuration of concentrating solar power generation in power system with high share of renewable energy resources

Ning Zhang, Yanghao Yu, Jiawei Wu, Ershun Du, Shuming Zhang, Jinyu Xiao

Summary: This paper provides insights into the optimal configuration of CSP plants with different penetrations of wind power by proposing an unconstrained optimization model. The results suggest that large solar multiples and TES are preferred in order to maximize profit, especially when combined with high penetrations of wind and photovoltaic plants. Additionally, the study demonstrates the economy and feasibility of installing electric heaters (EH) in CSP plants, which show a linear correlation with the penetration of variable energy resources.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Impact of the air supply system configuration on the straw combustion in small scale batch-boiler- experimental and numerical studies

M. Szubel, K. Papis-Fraczek, S. Podlasek

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Biomethane production from biogas obtained in wastewater treatment plants: Process optimization and economic analysis

J. Silva, J. C. Goncalves, C. Rocha, J. Vilaca, L. M. Madeira

Summary: This study investigated the methanation of CO2 in biogas and compared two different methanation reactors. The results showed that the cooled reactor without CO2 separation achieved a CO2 conversion rate of 91.8%, while the adiabatic reactors achieved conversion rates of 59.6% and 67.2%, resulting in an overall conversion rate of 93.0%. Economic analysis revealed negative net present worth values, indicating the need for government monetary incentives.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Composite nanofiber membranes to enhance the performance of high solids anaerobic digestion of organic rural household waste resources

Yang Liu, Yonglan Xi, Xiaomei Ye, Yingpeng Zhang, Chengcheng Wang, Zhaoyan Jia, Chunhui Cao, Ting Han, Jing Du, Xiangping Kong, Zhongbing Chen

Summary: This study investigated the effect of using nanofiber membrane composites containing Prussian blue-like compound nanoparticles (PNPs) to relieve ammonia nitrogen inhibition of rural organic household waste during high-solid anaerobic digestion and increase methane production. The results showed that adding NMCs with 15% PNPs can lower the concentrations of volatile fatty acids and ammonia nitrogen, and increase methane yield.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Thermodynamic and economic performance evaluations of double-stage organic flash cycle using hydrofluoroolefins (HFOs)

Zhong Ge, Xiaodong Wang, Jian Li, Jian Xu, Jianbin Xie, Zhiyong Xie, Ruiqu Ma

Summary: This study evaluates the thermodynamic, exergy, and economic performance of a double-stage organic flash cycle (DOFC) using ten eco-friendly hydrofluoroolefins. The influences of key parameters on performance are analyzed, and the advantages of DOFC over single-stage type are quantified.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Wind farm power density optimization according to the area size using a novel self-adaptive genetic algorithm

Nicolas Kirchner-Bossi, Fernando Porte-Agel

Summary: This study investigates the optimization of power density in wind farms and its sensitivity to the available area size. A novel genetic algorithm (PDGA) is introduced to optimize power density and turbine layout. The results show that the PDGA-driven solutions significantly reduce the levelized cost of energy (LCOE) compared to the default layout, and exhibit a convex relationship between area and LCOE or power density.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Experimental investigation of indoor lighting/thermal environment of liquid-filled energy-saving windows

Chunxiao Zhang, Dongdong Li, Lin Wang, Qingpo Yang, Yutao Guo, Wei Zhang, Chao Shen, Jihong Pu

Summary: In this study, a novel reversible liquid-filled energy-saving window that effectively regulates indoor solar radiation heat gain is proposed. Experimental results show that this window can effectively reduce indoor temperature during both summer and winter seasons, while having minimal impact on indoor illuminance.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Numerical assessment of tidal potential energy in the Brazilian Equatorial Shelf

Alessandro L. Aguiar, Martinho Marta-Almeida, Mauro Cirano, Janini Pereira, Leticia Cotrim da Cunha

Summary: This study analyzed the Brazilian Equatorial Shelf using a high-resolution ocean model and found significant tidal variations in the area. Several hypothetical barrages were proposed with higher annual power generation than existing barrages. The study also evaluated the installation effort of these barrages.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Optimization of the power output scheduling of a renewables-based hybrid power station using MILP approach: The case of Tilos island

Francesco Superchi, Nathan Giovannini, Antonis Moustakis, George Pechlivanoglou, Alessandro Bianchini

Summary: This study focuses on the optimization of a hybrid power station on the Tilos island in Greece, aiming to increase energy export and revenue by optimizing energy fluxes. Different scenarios are proposed to examine the impact of different agreements with the grid operator on the optimal solution.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Comparison of control strategies for efficient thermal energy storage to decarbonize residential buildings in cold climates: A focus on solar and biomass sources

Peimaneh Shirazi, Amirmohammad Behzadi, Pouria Ahmadi, Sasan Sadrizadeh

Summary: This research presents two novel energy production/storage/usage systems to reduce energy consumption and environmental effects in buildings. A biomass-fired model and a solar-driven system integrated with photovoltaic thermal (PVT) panels and a heat pump were designed and assessed. The results indicate that the solar-based system has an acceptable energy cost and the PVT-based system with a heat pump is environmentally superior. The biomass-fired system shows excellent efficiency.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Study on optimization of winter operation characteristics of solar-ground source heat pump in Shanghai

Zihao Qi, Yingling Cai, Yunxiang Cui

Summary: This study aims to investigate the operational characteristics of the solar-ground source heat pump system (SGSHPS) in Shanghai under different operation modes. It concludes that tandem operation mode 1 is the optimal mode for winter operation in terms of energy efficiency.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Platform chemicals recovery from spent coffee grounds aqueous-phase pyrolysis oil

L. Bartolucci, S. Cordiner, A. Di Carlo, A. Gallifuoco, P. Mele, V. Mulone

Summary: Spent coffee grounds are a valuable biogenic waste that can be used as a source of biofuels and valuable chemicals through pyrolysis and solvent extraction processes. The study found that heavy organic bio-oil derived from coffee grounds can be used as a carbon-rich biofuel, while solvent extraction can extract xantines and p-benzoquinone, which are important chemicals for various industries. The results highlight the promising potential of solvent extraction in improving the economic viability of coffee grounds pyrolysis-based biorefineries.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Evaluating energy generation of a building-integrated organic photovoltaic vertical façade: A case study of Latin America's pioneering installation

Luiza de Queiroz Correa, Diego Bagnis, Pedro Rabelo Melo Franco, Esly Ferreira da Costa Junior, Andrea Oliveira Souza da Costa

Summary: Building-integrated photovoltaics, especially organic solar technology, are important for reducing greenhouse gas emissions in the building sector. This study analyzed the performance of organic panels laminated in glass in a vertical installation in Latin America. Results showed that glass lamination and vertical orientation preserved the panels' performance and led to higher energy generation in winter.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Numerical simulation of fin arrangements on the melting process of PCM in a rectangular unit

Zhipei Hu, Shuo Jiang, Zhigao Sun, Jun Li

Summary: This study proposes innovative fin arrangements to enhance the thermal performance of latent heat storage units. Through optimization of fin distribution and prediction of transient melting behaviors, it is found that fin structures significantly influence heat transfer characteristics and melting behaviors.

RENEWABLE ENERGY (2024)