4.7 Article

Scale Sequence Joint Deep Learning (SS-JDL) for land use and land cover classification

期刊

REMOTE SENSING OF ENVIRONMENT
卷 237, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2019.111593

关键词

Multi-scale deep learning; Optimal scale selection; Convolutional neural network; Joint classification; Hierarchical representations

资金

  1. Centre of Excellence in Environmental Data Science (CEEDS) - Lancaster University
  2. Centre of Excellence in Environmental Data Science (CEEDS) - UK Centre for Ecology Hydrology
  3. National Key Research and Development Program of China [2016YFB0502300]
  4. National Natural Science Foundation of China [41871236]

向作者/读者索取更多资源

Choosing appropriate scales for remotely sensed image classification is extremely important yet still an open question in relation to deep convolutional neural networks (CNN), due to the impact of spatial scale (i.e., input patch size) on the recognition of ground objects. Currently, the optimal scale selection processes are extremely cumbersome and time-consuming requiring repetitive experiments involving trial-and-error procedures, which significantly reduce the practical utility of the corresponding classification methods. This issue is crucial when trying to classify large-scale land use (LU) and land cover (LC) jointly (Zhang et al., 2019). In this paper, a simple and parsimonious Scale Sequence Joint Deep Learning (SS-JDL) method is proposed for joint LU and LC classification, in which a sequence of scales is embedded in the iterative process of fitting the joint distribution implicit in the joint deep learning (JDL) method, thus, replacing the previous paradigm of scale selection. The sequence of scales, derived autonomously and used to define the CNN input patch sizes, provides consecutive information transmission from small-scale features to large-scale representations, and from simple LC states to complex LU characterisations. The effectiveness of the novel SS-JDL method was tested on aerial digital photography of three complex and heterogeneous landscapes, two in Southern England (Bournemouth and Southampton) and one in North West England (Manchester). Benchmark comparisons were provided in the form of a range of LU and LC methods, including the state-of-the-art joint deep learning (JDL) method. The experimental results demonstrated that the SS-JDL consistently outperformed all of the state-of-the-art baselines in terms of both LU and LC classification accuracies, as well as computational efficiency. The proposed SS-JDL method, therefore, represents a fast and effective implementation of the state-of-the-art JDL method. By creating a single, unifying joint distribution framework for classifying higher order feature representations, including LU, the SS-JDL method has the potential to transform the classification paradigm in remote sensing, and in machine learning more generally.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据