4.6 Article

Circadian misalignment alters insulin sensitivity during the light phase and shifts glucose tolerance rhythms in female mice

期刊

PLOS ONE
卷 14, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0225813

关键词

-

资金

  1. National Key R&D Program of China [2018YFA0800404]
  2. National Natural Science Foundation of China [81773403, 81741101]
  3. Science and Technology Planning Project of Guangzhou City [201707010037]
  4. Open Project of Guangdong Key Laboratory of Liver Disease Research [GS2017101008]
  5. Open Project of Guangdong Provincial Key Laboratory of Tropical Disease Research

向作者/读者索取更多资源

Shift work and jet lag, characterized by circadian misalignment, can disrupt several physiological activities, but whether they affect the rhythm of glucose uptake and insulin sensitivity remain unclear. In the present study, female C57BL/6J mice were maintained for four weeks under the condition of 8-hour phase advance and delay every 3-4 days to mimic shift work. Intraperitoneal glucose tolerance test (IPGTT) and intraperitoneal insulin tolerance test (IPITT) were performed repeatedly at Zeitgeber time (ZT) 0, ZT6, ZT12, and ZT18. Glucose-stimulated insulin secretion (GSIS) test was performed at ZT6. We found that the average level of daily glucose tolerance did not decrease but the phase of glucose tolerance advanced by 2.27 hours and the amplitude attenuated by 20.4% in shift work mice. At ZT6, IPITT showed blood glucose at 30 min after insulin injection decreased faster in shift work mice (-3.50 +/- 0.74mmol/L,-61.58 +/- 7.89%) than that in control mice (-2.11 +/- 1.10mmol/L,-33.72 +/- 17.24%), but IPGTT and GSIS test showed no significant difference between the two groups. Food intake monitor showed that the feeding time of shift work mice continued to advance. Restricting feed to a fixed 12-hour period alleviated the increase of insulin sensitivity induced by shift-work. We also observed that an increase of blood glucose and liver glycogen at ZT0, as well as a phase advance of liver clock genes and some glucose metabolism-related genes such as forkhead box O1 (Foxo1) and peroxisome proliferator activated receptor alpha (Ppara) in shift work mice. Our results showed that light change-simulated shift work altered insulin sensitivity during the light phase and shifted glucose tolerance rhythms in female mice, suggesting a causal association between long-term shift work and type 2 diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据