4.6 Article

Rheological behavior characteristics of MWCNT-TiO2/EG (40%-60%) hybrid nanofluid affected by temperature, concentration, and shear rate: An experimental and statistical study and a neural network simulating

出版社

ELSEVIER
DOI: 10.1016/j.physa.2019.124061

关键词

Dynamic viscosity; MWCNT-TiO2/EG; Rheological behavior; Nanofluid

向作者/读者索取更多资源

Rheological behavior of high-viscous fluids, is of crucial importance in design, function and efficient lifetime of thermal-fluid and mechanical-fluid systems. In this work we create a new 3rd power equation, correlating the viscosity of a hybrid nanofluid to the operation temperature and the content of the solid particles. An Ethylene Glycol, 40%-60% Multiwall Carbon Nanotubes and Titanium dioxide MWCNT-TiO2/EG, hybrid fluid is tested as the model component. The viscosity of the hybrid fluid with various contents of the solid particles, is measured systematically in 25-50 degrees C, and fit an equation with the R-2 of 0.9327. It was inferred that the volume fraction of the solid particles profoundly alters the rheological behavior of the nanofluid. To elaborate, in a low content of the solid particles, the rheological trait of the hybrid fluid follows a Newtonian model, as linearly changes with shear rate. Whilst, with a high content of solid particles the rheological trait of the hybrid fluid shifts to a non-Newtonian regime. Current study offers an easy and reliable theory, obtained from systematic data, which guarantees a precise prediction on rheological behavior of the MWCNT-TiO2/EG with various volume fractions of solid particles, and in various operating temperatures. (C) 2019 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据