4.6 Article

Pockels-effect-based adiabatic frequency conversion in ultrahigh-Q microresonators

期刊

OPTICS EXPRESS
卷 28, 期 3, 页码 2939-2947

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.378112

关键词

-

类别

向作者/读者索取更多资源

Adiabatic frequency conversion has some key advantages over nonlinear frequency conversion. No threshold and no phase-matching conditions need to be fulfilled. Moreover, it exhibits a conversion efficiency of 100% down to the single-photon level. Adiabatic frequency conversion schemes in microresonators demonstrated so far suffer either from low quality factors of the employed resonators resulting in short photon lifetimes or small frequency shifts. Here, we present an adiabatic frequency conversion (AFC) scheme by employing the Pockels effect. We use a non-centrosymmetric ultrahigh-Q microresonator made out of lithium niobate. Frequency shifts of more than 5 GHz are achieved by applying just 20 V to a 70-mu m-thick resonator. Furthermore, we demonstrate that with the same setup positive and negative frequency chirps can be generated. With this method, by controlling the voltage applied to the crystal, almost arbitrary frequency shifts can be realized. The general advances in on-chip fabrication of lithium-niobate-based devices make it feasible to transfer the current apparatus onto a chip suitable for mass production. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据