4.6 Article

Self-biased tri-state power-multiplexed digital metasurface operating at microwave frequencies

期刊

OPTICS EXPRESS
卷 28, 期 4, 页码 5410-5422

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.385524

关键词

-

类别

向作者/读者索取更多资源

Exploiting of nonlinearity has opened doors into undiscovered areas to achieve multiplexed performances in recent years. Although efforts have been made to obtain diverse nonlinear architectures at visible frequencies, the room is still free for incorporating non-linearity into the design of microwave metasurfaces. In this paper, a passive dual-band power intensity-dependent metasurface is presented, which is composed of two different linear and nonlinear meta-atoms accommodating a capacitor and a PIN-diode, respectively. The proposed digital metasurface has three operational states: 1) it acts as a normal reflector at low power intensities while providing a dual-band nonlinear response upon illuminating by high-power incidences where 2) it perfectly absorbs the radiations at f(1)=6.7 GHz and 3) re-distributes the scattered beams by arranging the meta-atoms with a certain coding pattern at f(2)=9.4 GHz. The performance of the designed coding elements has been characterized by using the scattering parameters captured in the full-wave simulations and the nonlinear analysis performed in ADS software where the accurate model of diodes is involved. The emergence of microwave self-biased metasurfaces with smart re-actions against incident waves with different power levels reveals great opportunities for designing smart windows, smart camouflage coating surfaces, and so on. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据