4.8 Article

4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics

期刊

NATURE PHOTONICS
卷 14, 期 5, 页码 330-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41566-019-0556-6

关键词

-

向作者/读者索取更多资源

Optical quantum information processing will require highly efficient photonic circuits to connect quantum nodes on-chip and across long distances. This entails the efficient integration of optically addressable qubits into photonic circuits, as well as quantum frequency conversion to the telecommunications band. 4H-silicon carbide (4H-SiC) offers unique potential for on-chip quantum photonics, as it hosts a variety of promising colour centres and has a strong second-order optical nonlinearity. Here, we demonstrate within a single, monolithic platform the strong enhancement of emission from a colour centre and efficient optical frequency conversion. We develop a fabrication process for thin films of 4H-SiC, which are compatible with industry-standard, CMOS nanofabrication. This work provides a viable route towards industry-compatible, scalable colour-centre-based quantum technologies, including the monolithic generation and frequency conversion of quantum light on-chip. Monolithic photonics devices based on SiC are fabricated by a wafer bonding and thinning technique. The strong enhancement of single-photon emission from a colour centre and optical frequency conversion with an efficiency of 360%W-1 are demonstrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据