4.8 Article

In situ visualization of loading-dependent water effects in a stable metal-organic framework

期刊

NATURE CHEMISTRY
卷 12, 期 2, 页码 186-192

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41557-019-0374-y

关键词

-

向作者/读者索取更多资源

Competitive water adsorption can have a significant impact on metal-organic framework performance properties, ranging from occupying active sites in catalytic reactions to co-adsorbing at the most favourable adsorption sites in gas separation and storage applications. In this study, we investigate, for a metal-organic framework that is stable after moisture exposure, what are the reversible, loading-dependent structural changes that occur during water adsorption. Herein, a combination of in situ synchrotron powder and single-crystal diffraction, infrared spectroscopy and molecular modelling analysis was used to understand the important role of loading-dependent water effects in a water stable metal-organic framework. Through this analysis, insights into changes in crystallographic lattice parameters, water siting information and water-induced defect structure as a response to water loading were obtained. This work shows that, even in stable metal-organic frameworks that maintain their porosity and crystallinity after moisture exposure, important molecular-level structural changes can still occur during water adsorption due to guest-host interactions such as water-induced bond rearrangements. A stable zinc-based metal-organic framework known to retain its porosity and crystallinity after exposure to moisture has been shown to undergo structural changes at the molecular level on adsorbing water. This dynamic and reversible response to the presence of water, including the rearrangement of bonds, is suggested to be the reason for the hydrolytic stability of this particular metal-organic framework.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据