4.8 Article

Fast two-qubit logic with holes in germanium

期刊

NATURE
卷 577, 期 7791, 页码 487-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41586-019-1919-3

关键词

-

资金

  1. FOM Projectruimte of the Foundation for Fundamental Research on Matter (FOM)
  2. Netherlands Organisation for Scientific Research (NWO)

向作者/读者索取更多资源

Universal quantum information processing requires the execution of single-qubit and two-qubit logic. Across all qubit realizations(1), spin qubits in quantum dots have great promise to become the central building block for quantum computation(2). Excellent quantum dot control can be achieved in gallium arsenide(3-5), and high-fidelity qubit rotations and two-qubit logic have been demonstrated in silicon(6-9), but universal quantum logic implemented with local control has yet to be demonstrated. Here we make this step by combining all of these desirable aspects using hole quantum dots in germanium. Good control over tunnel coupling and detuning is obtained by exploiting quantum wells with very low disorder, enabling operation at the charge symmetry point for increased qubit performance. Spin-orbit coupling obviates the need for microscopic elements close to each qubit and enables rapid qubit control with driving frequencies exceeding 100 MHz. We demonstrate a fast universal quantum gate set composed of single-qubit gates with a fidelity of 99.3 per cent and a gate time of 20 nanoseconds, and two-qubit logic operations executed within 75 nanoseconds. Planar germanium has thus matured within a year from a material that can host quantum dots to a platform enabling two-qubit logic, positioning itself as an excellent material for use in quantum information applications. Spin qubits based on hole states in strained germanium could offer the most scalable platform for quantum computation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Electrical & Electronic

Conduction spectroscopy of a proximity induced superconducting topological insulator

M. P. Stehno, N. W. Hendrickx, M. Snelder, T. Scholten, Y. K. Huang, M. S. Golden, A. Brinkman

SEMICONDUCTOR SCIENCE AND TECHNOLOGY (2017)

Article Multidisciplinary Sciences

Gate-controlled quantum dots and superconductivity in planar germanium

N. W. Hendrickx, D. P. Franke, A. Sammak, M. Kouwenhoven, D. Sabbagh, L. Yeoh, R. Li, M. L. Tagliaferri, M. Virgilio, G. Capellini, G. Scappucci, M. Veldhorst

NATURE COMMUNICATIONS (2018)

Article Chemistry, Multidisciplinary

Shallow and Undoped Germanium Quantum Wells: A Playground for Spin and Hybrid Quantum Technology

Amir Sammak, Diego Sabbagh, Nico W. Hendrickx, Mario Lodari, Brian Paquelet Wuetz, Alberto Tosato, LaReine Yeoh, Monica Bollani, Michele Virgilio, Markus Andreas Schubert, Peter Zaumseil, Giovanni Capellini, Menno Veldhorst, Giordano Scappucci

ADVANCED FUNCTIONAL MATERIALS (2019)

Article Physics, Applied

Quantum dot arrays in silicon and germanium

W. I. L. Lawrie, H. G. J. Eenink, N. W. Hendrickx, J. M. Boter, L. Petit, S. Amitonov, M. Lodari, B. Paquelet Wuetz, C. Volk, S. G. J. Philips, G. Droulers, N. Kalhor, F. van Riggelen, D. Brousse, A. Sammak, L. M. K. Vandersypen, G. Scappucci, M. Veldhorst

APPLIED PHYSICS LETTERS (2020)

Article Multidisciplinary Sciences

Universal quantum logic in hot silicon qubits

L. Petit, H. G. J. Eenink, M. Russ, W. I. L. Lawrie, N. W. Hendrickx, S. G. J. Philips, J. S. Clarke, L. M. K. Vandersypen, M. Veldhorst

NATURE (2020)

Article Chemistry, Multidisciplinary

Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots

W. I. L. Lawrie, N. W. Hendrickx, F. van Riggelen, M. Russ, L. Petit, A. Sammak, G. Scappucci, M. Veldhorst

NANO LETTERS (2020)

Article Materials Science, Multidisciplinary

Ballistic supercurrent discretization and micrometer-long Josephson coupling in germanium

N. W. Hendrickx, M. L. Tagliaferri, M. Kouwenhoven, R. Li, D. P. Franke, A. Sammak, A. Brinkman, G. Scappucci, M. Veldhorst

PHYSICAL REVIEW B (2019)

Article Materials Science, Multidisciplinary

Impact of g-factors and valleys on spin qubits in a silicon double quantum dot

J. C. C. Hwang, C. H. Yang, M. Veldhorst, N. Hendrickx, M. A. Fogarty, W. Huang, F. E. Hudson, A. Morello, A. S. Dzurak

PHYSICAL REVIEW B (2017)

暂无数据