4.6 Article

Copper-doped induced ferromagnetic half-metal zirconium diselenide single crystals

期刊

NANOTECHNOLOGY
卷 31, 期 23, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6528/ab72b3

关键词

transition metal-doped ZrSe2 single crystals; ferromagnetism; half-metal; ARPES; DFT

资金

  1. Science and Technology Innovation Commission of Shenzhen [JCYJ20180305125302333, JCYJ20170818093035338, JCYJ20180305125430954]
  2. Guangdong Basic and Applied Basic Research Foundation [2019A1515011762]
  3. Shenzhen University Fund [860-000002110229]
  4. Foshan City Education Department Fundation

向作者/读者索取更多资源

Two-dimensional (2D) magnetic layered materials have attracted considerable attention in memory storage devices due to their exciting magnetic ordering. Herein, the electronic and magnetic properties of high-quality single crystals zirconium diselenide and copper (Cu)-doped zirconium diselenide as grown via chemical vapor transport technique combined with first principle density functional theory calculations were investigated. A semimetallic state is recognized for Cu0.052Zr0.93Se2 as measured through resistance versus temperature measurements and angle resolved photoemission spectroscopy (ARPES). The magnetic measurement shows diamagnetic semiconducting behaviour for ZrSe2, whereas Cu0.052Zr0.93Se2 exhibits ferromagnetic character via applying perpendicular magnetic field. Cu0.052Zr0.93Se2 reveals the room temperature magnetic moment similar to 0.0125 emu g(-1), while the Curie temperature is similar to 363.49 K. Furthermore, first principle density functional theory (DFT) calculations show energetically long range ferromagnetic ordering in a half-metallic Cu-doped ZrSe2, while a diamagnetic state in case of ZrSe2 agrees well with experiment results. These results suggest that due to strong interaction elements at the octahedral site of zirconium atoms when replaced by copper atoms, which can change the spin ordering of electrons and make zirconium vacancy, while their magnetic moment is increased. Very importantly the half-metallic character of Cu0.052Zr0.93Se2 promotes much spin polarized electrons around the Fermi level, suggesting significant potential in future memory devices and spintronic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据