4.6 Article

Matrix regeneration proteins in the hypoxia-triggered exosomes of shoulder tenocytes and adipose-derived mesenchymal stem cells

期刊

MOLECULAR AND CELLULAR BIOCHEMISTRY
卷 465, 期 1-2, 页码 75-87

出版社

SPRINGER
DOI: 10.1007/s11010-019-03669-7

关键词

Exosomes; Rotator cuff tendon injury; Tendon regeneration; Tendon matrix; Tenocytes; ADMSCs

资金

  1. State of Nebraska [LB506, LB606]
  2. National Institutes of Health [R01HL120659, R01HL144125]

向作者/读者索取更多资源

Regenerative functions of exosomes rely on their contents which are influenced by pathological stimuli, including hypoxia, in rotator cuff tendon injuries (RCTI). The hypoxic environment triggers tenocytes and adjacent adipose-derived mesenchymal stem cells (ADMSCs) to release regenerative mediators to the ECM via the exosomes which elicit autocrine/paracrine responses to protect the tendon matrix from injury. We investigated the exosomal protein contents from tenocytes and subcutaneous ADMSCs from the shoulder of Yucatan microswine cultured under hypoxic conditions (2% O-2). The exosomal proteins were detected using high-resolution mass spectrometry nano-LC-MS/MS Tribrid system and were compiled using 'Scaffold' software. Hypoxic exosomes from tenocytes and ADMSCs carried 199 and 65 proteins, respectively. The key proteins identified by mass spectrometry and associated with ECM homeostasis from hypoxic ADMSCs included MMP2, COL6A, CTSD and TN-C and those from hypoxic tenocytes were THSB1, NSEP1, ITIH4 and TN-C. These findings were confirmed at the mRNA and protein level in the hypoxic ADMSCs and tenocytes. These proteins are involved in multiple signaling pathways of ECM repair/regeneration. This warrants further investigations for their translational significance in the management of RCTI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据