4.7 Article

LncRNA-MALAT1 promotes tumorogenesis of infantile hemangioma by competitively binding miR-424 to stimulate MEKK3/NF-κB pathway

期刊

LIFE SCIENCES
卷 239, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2019.116946

关键词

MALAT1; miR-424; MEKK3; Infantile hemangioma; IKK/NF-kappa B pathway

向作者/读者索取更多资源

Aims: Infantile hemangioma (IH) is the most common vascular neoplasm in infant and young children. Long non-coding RNAs (lncRNAs) are known to be associated with IH. This study aims to investigate the role and underlying mechanism of lncRNA-MALAT1 in IH. Main methods: qRT-PCR was used to quantify the expressions of MALAT1, miR-424, and MEKK3 in IH tissues. The cell proliferation, apoptosis, migration, invasion, and tube formation ability were assessed by MTT assay, colony formation assay, flow cytometric analysis, transwell assay and tube formation assay, respectively. The interaction among MALAT1, miR-424 and MEKK3 was evaluated by luciferase reporter assay. Immunohistochemistry (IHC) and Western blotting were utilized to evaluate the expression levels of MEKK3, Ki-67 and NF-kappa B pathway-related proteins both in vitro and in vivo. Key findings: In IH tissues, MALAT1 and MEKK3 were overexpressed while miR-424 was down-regulated. Silencing MALAT1 or overexpression of miR-424 significantly inhibited the IH cell proliferation, migration and tube formation, but promoted the cell apoptosis. Knockdown of MALAT1 suppressed the expression of MEKK3 and inactivated the IKK/NF-kappa B pathway by sponging miR-424. Overexpression of MEKK3 in HemEcs reversed the impact of knockdown of MALAT1 and overexpression of miR-424 on the cell proliferation, apoptosis, migration, invasion and tube formation rate. The tumor xenografts experiments demonstrated that silencing MALAT1 significantly inhibited the tumor growth in vivo and Ki-67 in the tumor tissues was also significantly suppressed. Significance: MALAT1 promoted the IH progression through inhibiting miR-424 to activate MEKK3-mediated IKK/NF-kappa B pathway, suggesting that MALAT1, miR-424 and MEKK3 could be used as potential targets to improve IH treatment efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Medicine, Research & Experimental

Targeting the chromatin remodeling protein BRG1 in liver fibrosis: Mechanism and translational potential

Yuwen Zhu, Yan Guo, Yujia Xue, Anqi Zhou, Ying Chen, Yifei Chen, Xiulian Miao, Fangqiao Lv

Summary: BRG1 plays an important role in HSC-myofibroblast transition and targeting it could be a reasonable strategy for liver fibrosis intervention.

LIFE SCIENCES (2024)

Article Medicine, Research & Experimental

DCLK1 and its oncogenic functions: A promising therapeutic target for cancers

Liu Ye, Beibei Liu, Jingling Huang, Xiaolin Zhao, Yuan Wang, Yungen Xu, Shuping Wang

Summary: Doublecortin-like kinase 1 (DCLK1) is a significant prooncogenic factor that is strongly associated with the malignant progression and clinical prognosis of various cancers. DCLK1 plays important roles in stem cell marker regulation, tumor cell reprogramming, and immune evasion. However, the exact biological functions of DCLK1, especially the disparities between its alpha- and beta-form transcripts in cancer progression, remain ambiguous.

LIFE SCIENCES (2024)

Article Medicine, Research & Experimental

Potential role of bile acids in the pathogenesis of necrotizing enterocolitis

Jiahui Yang, Xiaoyu Chen, Tianjing Liu, Yongyan Shi

Summary: This article reviews the role of bile acids in necrotizing enterocolitis (NEC) and their potential therapeutic value. The dysregulation of bile acids is associated with intestinal injury, and inflammatory factors in the liver also play a crucial role in regulating bile acid transport. The bile acid metabolic pathway is important for regulating intestinal microbiota, cell proliferation, and barrier protection.

LIFE SCIENCES (2024)

Review Medicine, Research & Experimental

Review on chronic metabolic diseases surrounding bile acids and gut microbiota: What we have explored so far

Zhenzheng Zhu, Yuemiao Xu, Yuwei Xia, Xinru Jia, Yixin Chen, Yuyue Liu, Leyin Zhang, Hui Chai, Leitao Sun

Summary: Bile acid, as the final product of cholesterol breakdown, plays a complex regulatory and signaling role in human metabolism. Research suggests that it has the potential to enhance metabolism and regulate chronic metabolic diseases through various pathways. The interaction between bile acid and gut microbiota is also of great significance.

LIFE SCIENCES (2024)

Article Medicine, Research & Experimental

Metabolomics study reveals increased deoxycholic acid contributes to deoxynivalenol-mediated intestinal barrier injury

Xin He, Hong-Xu Zhou, Xian Fu, Kai-Di Ni, Ai-Zhi Lin, Ling-Tong Zhang, Hou-Hua Yin, Qing Jiang, Xue Zhou, Yi-Wen Meng, Jun-Yan Liu

Summary: DON exposure causes an increase in deoxycholic acid (DCA), which contributes to intestinal injury. DCA may be a potential therapeutic target for DON enterotoxicity.

LIFE SCIENCES (2024)

Article Medicine, Research & Experimental

TET1-mediated epigenetic regulation of tumor necrosis factor-α in trigeminal ganglia contributes to chronic temporomandibular joint pain

Zhitao Wang, Heng Ma, Abdul Nasir, Sufang Liu, Zhisong Li, Feng Tao, Qian Bai

Summary: This study reveals the involvement of TET1-mediated epigenetic regulation in chronic TMJ pain through trigeminal TNF alpha signaling.

LIFE SCIENCES (2024)

Article Medicine, Research & Experimental

Targeting HIF-1α alleviates the inflammatory responses and rebuilds the CD4+ T cell subsets balance in the experimental autoimmune myasthenia gravis inflammation model via regulating cellular and humoral immunity

Lu Yu, Hao Ran, Yaru Lu, Qian Ma, Huan Huang, Weibin Liu

Summary: This study found that the HIF-1 alpha inhibitor BAY 87-2243 can alleviate the symptoms of the Experimental Autoimmune Myasthenia Gravis (EAMG) inflammation model. BAY 87-2243 can restore the balance of CD4(+)T cell subsets, reduce the production of pro-inflammatory cytokines, and act as both an immune imbalance regulator and anti-inflammatory.

LIFE SCIENCES (2024)

Article Medicine, Research & Experimental

Evidence for the involvement of TRPV2 channels in the modulation of vascular tone in the mouse aorta

Alex Peralvarez-Marin, Montse Sole, Judith Serrano, Alice Taddeucci, Belen Perez, Clara Penas, Gemma Manich, Marcel Jimenez, Pilar D'Ocon, Francesc Jimenez-Altayo

Summary: This study provides the first evidence that TRPV2 channels may modulate vascular tone by balancing opposing inputs from the endothelium and smooth muscle, leading to net vasodilation. The amplification of TRPV2 channel-induced activity by NO emphasizes the pathophysiological relevance of these findings.

LIFE SCIENCES (2024)

Article Medicine, Research & Experimental

Involvement of CXC chemokines (CXCL1-CXCL17) in gastric cancer: Prognosis and therapeutic molecules

Amin Ullah, Jing Zhao, Jiakun Li, Rajeev K. Singla, Bairong Shen

Summary: Gastric cancer is the fifth-most prevalent and second-most deadly cancer worldwide. Late onset of symptoms makes early detection important. CXC chemokines play an important role in the pathological process of gastric cancer, but their exact role in diagnosis and prognosis is not fully understood. Inhibiting CXC chemokines shows promise as a targeted therapy.

LIFE SCIENCES (2024)

Article Medicine, Research & Experimental

Trigonelline mitigates bleomycin-induced pulmonary inflammation and fibrosis: Insight into NLRP3 inflammasome and SPHK1/S1P/Hippo signaling modulation

Menna S. Zeyada, Salma M. Eraky, Mamdouh M. El-Shishtawy

Summary: The current study demonstrates the prophylactic and antifibrotic effects of Trig against BLM-induced PF by targeting multiple signaling pathways. The combination of Trig and Pirf may be a promising approach to enhance Pirf's anti-fibrotic effect.

LIFE SCIENCES (2024)