4.4 Article

Spatial self-organisation enables species coexistence in a model for savanna ecosystems

期刊

JOURNAL OF THEORETICAL BIOLOGY
卷 487, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2019.110122

关键词

Vegetation patterns; Periodic travelling waves; Wavetrains; Pattern formation; Ecosystem engineering; Banded vegetation; Tiger bush; Reaction-advection-diffusion; Spectral stability

资金

  1. Maxwell Institute Graduate School in Analysis and its Applications, a Centre for Doctoral Training - UK Engineering and Physical Sciences Research Council [EP/L016508/01]
  2. Scottish Funding Council
  3. Heriot-Watt University
  4. University of Edinburgh

向作者/读者索取更多资源

The savanna biome is characterised by a continuous vegetation cover, comprised of herbaceous and woody plants. The coexistence of species in arid savannas, where water availability is the main limiting resource for plant growth, provides an apparent contradiction to the classical principle of competitive exclusion. Previous theoretical work using nonspatial models has focussed on the development of an understanding of coexistence mechanisms through the consideration of resource niche separation and ecosystem disturbances. In this paper, we propose that a spatial self-organisation principle, caused by a positive feedback between local vegetation growth and water redistribution, is sufficient for species coexistence in savanna ecosystems. We propose a spatiotemporal ecohydrological model of partial differential equations, based on the Klausmeier reaction-advection-diffusion model for vegetation patterns, to investigate the effects of spatial interactions on species coexistence on sloped terrain. Our results suggest that species coexistence is a possible model outcome, if a balance is kept between the species' average fitness (a measure of a species' competitive abilities in a spatially uniform setting) and their colonisation abilities. Spatial heterogeneities in resource availability are utilised by the superior coloniser (grasses), before it is outcompeted by the species of higher average fitness (trees). A stability analysis of the spatially nonuniform coexistence solutions further suggests that grasses act as ecosystem engineers and facilitate the formation of a continuous tree cover for precipitation levels unable to support a uniform tree density in the absence of a grass species. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据