4.8 Article

CO2 Photoreduction on Metal Oxide Surface Is Driven by Transient Capture of Hot Electrons: Ab Initio Quantum Dynamics Simulation

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 142, 期 6, 页码 3214-3221

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b13280

关键词

-

资金

  1. National Key Foundation of China, Department of Science and Technology [2017YFA0204904, 2016YFA0200604]
  2. National Natural Science Foundation of China (NSFC) [11704363, 11620101003, 11974322]
  3. U.S. National Science Foundation [CHE-1900510]
  4. U.S. Department of Energy Office of Biological and Environmental Research

向作者/读者索取更多资源

The most critical bottleneck in CO2 photoreduction lies in the activation of CO2 to form an anion radical, CO2 center dot-, or other intermediates by the photoexcited electrons, because CO2 has a high-energy lowest unoccupied molecular orbital (LUMO). Taking rutile TiO2(110) as a prototypical surface, we use time-dependent ab initio nonadiabatic molecular dynamics simulations to reveal that the excitation of bending and antisymmetric stretching vibrations of CO2 can sufficiently stabilize the CO2 LUMO below the conduction band minimum, allowing it to trap photoexcited hot electrons and get reduced. Such vibrational excitations occur by formation of a transient CO2 center dot- adsorbed in an oxygen vacancy. CO2 can trap the hot electrons for nearly 100 fs and dissociate to form CO within 30-40 fs after the trapping. We propose that the activation of the CO2 bending and antisymmetric stretching vibrations driven by hot electrons applies to other CO2 reduction photocatalysts and can be realized by different techniques and material design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据