4.5 Article

Modelling the influence of pre-existing brittle fabrics on the development and architecture pull-apart basins

期刊

JOURNAL OF STRUCTURAL GEOLOGY
卷 131, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsg.2019.103937

关键词

Pull-apart basins; Pre-existing brittle structures; Reactivation; Analogue modelling

资金

  1. European Community HORIZON 2020 research and innovation program [676564]

向作者/读者索取更多资源

We use new analogue modelling experiments to analyse the development of pull-apart basins in an upper crust characterised by the presence of pre-existing discrete fabrics. As in previous models, lateral movement of rigid basal plates induced strike-slip deformation of a sand-pack. Local extension allowing the formation of a pull-apart basin was produced by the step-over geometry of the master faults; in this area, a basal silicone layer was introduced to distribute deformation and reproduced a weaker crust in the basin. Conditions of neutral, overlapping and underlapping interacting master faults were reproduced. The model upper crust, modelled by a sand mixture, was characterised by the presence of pre-existing structures; the orientation of these inherited heterogeneities was systematically varied in different experiments. Model results indicate that, depending on their orientation with respect to the strike-slip displacement, pre-existing structures can be reactivated both within and at the margins of the pull-apart basins. Inside the basin, reactivation occurs when the pre-existing structures are orthogonal or sub-orthogonal to the strike-slip displacement; in this case, the pre-existing fabrics delay the development and linkage of cross-basin faults and increase the complexity of the deformation pattern giving rise to a new set of faults characterised by an atypical trend. Pre-existing fabrics oblique to the local extension direction may be partly reactivated in the central part of the basin as segments of cross-basin faults. At the margins of the pull-apart, reactivation occurs if the fabrics spatially coincide with the lateral boundaries of the silicone layer. In these conditions, reactivation allows a faster development of the border faults, which are less segmented than in the homogenous models; this also results in a more regular final geometry of the pull-apart.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据