4.5 Article

An experimental and numerical study of low salinity effects on the oil recovery of carbonate rocks combining spontaneous imbibition, centrifuge method and coreflooding experiments

期刊

出版社

ELSEVIER
DOI: 10.1016/j.petrol.2020.107045

关键词

Low-salinity; Carbonates; Coreflooding; Centrifuge method; DuMuX; Numerical modeling

资金

  1. ADNOC

向作者/读者索取更多资源

Low-salinity waterflooding (LSF) is a relatively simple and cheap Enhanced Oil Recovery technique in which the salinity of the injected water is optimized to improve oil recovery over conventional waterflooding. Sulfate-rich as well as diluted brines have shown promising potential to increase oil production in limestone core samples. To quantify the low-salinity effect, spontaneous imbibition and/or waterflooding experiments have been reported. This paper combines spontaneous imbibition, centrifuge and unsteady state (USS) coreflooding experiments to investigate low-salinity effects in carbonate samples. The experimental study used three brine compositions to investigate low-salinity effects. A high-saline Formation-water (salinity of 183.4 g/l), Sea-water (43.8 g/l) and 100-times Diluted-sea-water (0.4 g/l). Initially, a sequence of spontaneous imbibition experiments was conducted to screen the impact of connate and imbibing water composition on spontaneous oil recovery. After completing the spontaneous imbibition tests, the samples were drained inside a centrifuge to determine the impact of brine composition on residual saturation and capillary pressure. Moreover, three USS corefloodings were conducted to test the different brine compositions in secondary and tertiary injection mode. The spontaneous imbibition, centrifuge method and coreflooding tests showed a consistent trend. Compared to Formation-water and Sea-water, Diluted-sea water demonstrated the most promising potential to recover oil efficiently. The numerical part of the study includes the transparent development of a numerical centrifuge and coreflooding model on the top of the open-source simulator DuMu(x). The mathematical model formulation demonstrates that a simple numerical approach is sufficient to history match the centrifuge and coreflooding experiments. In line with the experimental data, the numerically derived capillary pressure and relative permeability showed an increasing water-wetting behavior as the salinity of the imbibing/injection water decreased. All implemented numerical models were validated against the commercially established Cydar software.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据