4.7 Article

Medial Prefrontal Cortex Neural Plasticity, Orexin Receptor 1 Signaling, and Connectivity with the Lateral Hypothalamus Are Necessary in Cue-Potentiated Feeding

期刊

JOURNAL OF NEUROSCIENCE
卷 40, 期 8, 页码 1744-1755

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1803-19.2020

关键词

appetite; learning; obesity; orexin; plasticity; prefrontal cortex

资金

  1. National Alliance for Research on Schizophrenia and Depression Young Investigator Grant
  2. Brain & Behavior Research Foundation [22705]
  3. National Institute of Diabetes and Digestive and Kidney Diseases [R01DK085721]
  4. Boston College

向作者/读者索取更多资源

Cognitive processes contribute to the control of feeding behavior and help organism's survival when they support physiological needs. They can become maladaptive, such as when learned food cues drive feeding in the absence of hunger. Associative learning is the basis for cue-driven food seeking and consumption, and behavioral paradigms with Pavlovian cue-food conditioning are well established. Yet, the neural mechanisms underlying circuit plasticity across cue-food learning, cue memory recall,and subsequent food motivation are unknown. Here, we demonstrated the medial prefrontal cortex (mPFC) is a site of learning-induced plasticity and signaling of the neuropeptide orexin within the mPFC mediates cue potentiated feeding (CPF). First, using a marker of neuronal activation, c-fos, we confirmed that the mPFC is activated during CPF. Next, to assess whether the same mPFC neuronal ensemble is activated during cue-food learning and later CPF, we used the Daun02 chemogenetic inactivation method in c-fos-lacZ transgenic male and female rats. Selective inactivation of the mPFC neurons that were active during the last cue-food training session abolished CPF during test, demonstrating that the mPFC is a site of plasticity. We postulated that integration of food cue memory and feeding motivation requires mPFC communications with lateral hypothalamus and showed that disconnection of that system abolished CPF. Then we showed that lateral hypothalamus orexin-producing neurons project to the mPFC. Finally, we blocked orexin receptor 1 signaling in the mPFC and showed that it is a neuromodulator necessary for the cue-driven consumption. Together, our findings identify a causal function for the mPFC in the cognitive motivation to eat.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据