4.7 Article

Direct contact membrane distillation of refining waste stream from precious metal recovery: Chemistry of silica and chromium (III) in membrane scaling

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 598, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2019.117803

关键词

Precious metal recovery; Refining wastewater; Membrane distillation; Silica and chromium (III) scaling

资金

  1. Fundamental Research Funds for the Central Universities [2232018D3-09, 2232019G-11]
  2. Subject construction funds of College of Environmental Science and Engineering
  3. National Natural Science Foundation of China [21507142, 21477018]
  4. Natural Science Foundation of Shanghai, China [18ZR1401000]
  5. Shanghai Pujiang Program [18PJ1400400]

向作者/读者索取更多资源

Precious metals, such as platinum group metals (PGMs) with distinct catalytic activity, are widely used as active components in various industrial catalysts. It is, therefore, highly desirable to recover these valuable components from the end-of-life products. We explored treatment of refining wastewater from precious metals recovery using direct contact membrane distillation (DCMD). The role of various initial pH of refining wastewater on DCMD performance was assessed. Results suggested that hydrochloride acid (HCl) and high-quality water can be reclaimed from the real refining wastewater by adjusting initial pH. Furthermore, DCMD water flux decline was mainly caused by silica and chromium (III) scaling, which was dependent on initial pH of refining wastewater. Silica scaling was responsible for the decrease of DCMD performance when the initial pH of refining wastewater increased from original 0.03 to 5 and 7. Silica oligomers in the concentrated feed with various initial pH were identified using mass spectra. Dichlorotetraaquochromiun was identified by X-ray photoelectron spectroscopy and ultraviolet and visible absorbance spectra as the main species contributing to the green colour and scaling on the PTFE membrane surface. Our results suggest that DCMD can be used as a promising and feasible solution for resource recovery from acidic refining waste stream.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据