4.7 Article

Manganese-based multi-oxide derived from spent ternary lithium-ions batteries as high-efficient catalyst for VOCs oxidation

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 380, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.120905

关键词

Spent ternary lithium-ions batteries; Manganese-based multi-oxide; VOCs oxidation; In-situ DRIFTs

资金

  1. National Natural Science Foundation of China [21876107, 21607103]

向作者/读者索取更多资源

Valuable metals such as manganese, cobalt, nickel and copper are recycled from spent ternary lithium-ions batteries (LiBs) and are considered as the active metal precursor to prepare based-manganese multi oxide for VOCs oxidation. The results of characterization analysis indicate that the catalyst from spent LiBs shows larger specific surface area of 26.80 m(2)/g as well as abundant mesoporous structures on the surface, higher molar ratio of Mn4+/Mn3+(0.70) and O-latt/O-ads (1.68), better low-temperature reductivity and stronger intensity of weak acid sites in comparison with those of pure manganese oxides. The evaluation experiments show that the catalyst from waste exhibits more excellent catalytic performance of toluene combustion in comparison with pure manganese oxides. Furthermore, the presence of considerable amount of lithium and aluminum ions can severely weaken the catalytic activity while the co-existence of nickel, cobalt and copper ions contribute a lot to facilitate the catalytic behavior. In-situ DRIFT study implies that the introduction of lithium, aluminum, nickel, copper and cobalt into pure manganese oxides can facilitate toluene conversion to various extents, following the consecutive steps via benzyl species, benzoyl oxide species, benzaldehyde species, benzoate species and the primary intermediates are benzoate species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据