4.7 Article

Pectin methylesterase selectively softens the onion epidermal wall yet reduces acid-induced creep

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 71, 期 9, 页码 2629-2640

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/eraa059

关键词

Atomic force microscopy; biomechanics; expansin; homogalacturonan; nanoindentation; onion (Allium cepa) epidermis; pectin methylesterase; plant cell wall mechanics; tensile testing; wall hydration

资金

  1. Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center - US Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001090]

向作者/读者索取更多资源

De-esterification of homogalacturonan (HG) is thought to stiffen pectin gels and primary cell walls by increasing calcium cross-linking between HG chains. Contrary to this idea, recent studies found that HG de-esterification correlated with reduced stiffness of living tissues, measured by surface indentation. The physical basis of such apparent wall softening is unclear, but possibly involves complex biological responses to HG modification. To assess the direct physical consequences of HG de-esterification on wall mechanics without such complications, we treated isolated onion (Allium cepa) epidermal walls with pectin methylesterase (PME) and assessed wall biomechanics with indentation and tensile tests. In nanoindentation assays, PME action softened the wall (reduced the indentation modulus). In tensile force/extension assays, PME increased plasticity, but not elasticity. These softening effects are attributed, at least in part, to increased electrostatic repulsion and swelling of the wall after PME treatment. Despite softening and swelling upon HG de-esterification, PME treatment alone failed to induce cell wall creep. Instead, acid-induced creep, mediated by endogenous alpha-expansin, was reduced. We conclude that HG de-esterification physically softens the onion wall, yet reduces expansin-mediated wall extensibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据