4.7 Article

Wave Function Perspective and Efficient Truncation of Renormalized Second-Order Perturbation Theory

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 16, 期 2, 页码 1090-1104

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.9b01182

关键词

-

资金

  1. Royal Society
  2. European Union's Horizon 2020 research and innovation programme [759063]

向作者/读者索取更多资源

We present an approach to a renormalized second-order Green's function perturbation theory (GF2), which avoids all dependency on continuous variables, grids, or explicit Green's functions and is instead formulated entirely in terms of static quantities and wave functions. Correlation effects from MP2 diagrams are iteratively incorporated to modify the underlying spectrum of excitations by coupling the physical system to fictitious auxiliary degrees of freedom, allowing for single-particle orbitals to delocalize into this additional space. The overall approach is shown to be rigorously O[N-5], after an appropriate compression of this auxiliary space. This is achieved via a novel scheme, which ensures that a desired number of moments of the underlying occupied and virtual spectra are conserved in the compression, allowing a rapid and systematically improvable convergence to the limit of the effective dynamical resolution. The approach is found to then allow for the qualitative description of stronger correlation effects, avoiding the divergences of MP2, as well as its orbital-optimized version. On application to the G1 test set, we find that modification up to only the third spectral moment of the underlying spectrum from which the double excitations are built are required for accurate energetics, even in strongly correlated regimes. This is beyond simple self-consistent changes to the density matrix of the system but far from requiring a description of the full dynamics of the frequency-dependent self-energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据