4.7 Article

Parameter-free coordination numbers for solutions and interfaces

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 152, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5135696

关键词

-

资金

  1. AXELERA Pole de Competitivite

向作者/读者索取更多资源

Coordination numbers are among the central quantities to describe the local environment of atoms and are thus used in various applications such as structure analysis, fingerprints, and parameters. Yet, there is no consensus regarding a practical algorithm, and many proposed methods are designed for specific systems. In this work, we propose a scale-free and parameter-free algorithm for nearest neighbor identification. This algorithm extends the powerful Solid-Angle based Nearest-Neighbor (SANN) framework to explicitly include local anisotropy. As such, our Anisotropically corrected SANN (ASANN) algorithm provides with a fast, robust, and adaptive method for computing coordination numbers. The ASANN algorithm is applied to flat and corrugated metallic surfaces to demonstrate that the expected coordination numbers are retrieved without the need for any system-specific adjustments. The same applies to the description of the coordination numbers of metal atoms in AuCu nanoparticles, and we show that ASANN based coordination numbers are well adapted for automatically counting neighbors and the establishment of cluster expansions. Analysis of classical molecular dynamics simulations of an electrified graphite electrode reveals a strong link between the coordination number of Cs+ ions and their position within the double layer, a relation that is absent for Na+, which keeps its first solvation shell even close to the electrode. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据