4.5 Article

Translation of two-photon microscopy to the clinic: multimodal multiphoton CARS tomography of in vivo human skin

期刊

JOURNAL OF BIOMEDICAL OPTICS
卷 25, 期 1, 页码 -

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.JBO.25.1.014515

关键词

multiphoton tomography; two-photon microscopy; coherent anti-Stokes Raman spectroscopy; femtosecond laser; medical imaging; second harmonic generation; fluorescence lifetime imaging; skin; psoriasis; dermatitis; nicotinamide adenine dinucleotide [NAD(P)H]; translational medicine; label-free imaging; autofluorescence

向作者/读者索取更多资源

Two-photon microscopes have been successfully translated into clinical imaging tools to obtain high-resolution optical biopsies for in vivo histology. We report on clinical multiphoton coherent anti-Stokes Raman spectroscopy (CARS) tomography based on two tunable ultrashort near-infrared laser beams for label-free in vivo multimodal skin imaging. The multiphoton biopsies were obtained with the compact tomograph MPTflex-CARS using a photonic crystal fiber, an optomechanical articulated arm, and a four-detector-360 deg measurement head. The multiphoton tomograph has been employed to patients in a hospital with diseased skin. The clinical study involved 16 subjects, 8 patients with atopic dermatitis, 4 patients with psoriasis vulgaris, and 4 volunteers served as control. Two-photon cellular autofluorescence lifetime, second harmonic generation (SHG) of collagen, and CARS of intratissue lipids/proteins have been detected with single-photon sensitivity, submicron spatial resolution, and picosecond temporal resolution. The most important signal was the autofluorescence from nicotinamide adenine dinucleotide [NAD(P)H]. The SHG signal from collagen was mainly used to detect the epidermal-dermal junction and to calculate the ratio elastin/collagen. The CARS/Raman signal provided add-on information. Based on this view on the disease-affected skin on a subcellular level, skin areas affected by dermatitis and by psoriasis could be clearly identified. Multimodal multiphoton tomographs may become important label-free clinical high-resolution imaging tools for in vivo skin histology to realize rapid early diagnosis as well as treatment control. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据