4.5 Article

Crayfish hemocyanin on chitin bone substitute scaffolds promotes the proliferation and osteogenic differentiation of human mesenchymal stem cells

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.36849

关键词

calcium carbonate; chitin; crayfish; hemocyanin; human osteoblasts

资金

  1. German-Israeli Cooperation in Biotechnology [BIO-DISC 7]
  2. BMBF [13GW0025]

向作者/读者索取更多资源

Crustacean chitin-hemocyanin-calcium mineral complexes were designed as bone biomimetics, with emphasis on their ability to bind or release calcium ions. Chitin scaffolds were prepared by dissolving chitin flakes in LiCl/dimethylacetamide, followed by gel formation and freeze-drying. Some of these scaffolds were modified by incorporation of CaCO3. In some of the chitin-CaCO3 scaffolds, macroporosity was introduced by HCl treatment. Hemocyanin from the crayfish Cherax quadricarinatus was used to further modify the chitin scaffolds by dip coating. Cytocompatibility, cellular adherence and proliferation of human mesenchymal stem cells (hMSCs) were evaluated in terms of cell number as reflected in lactate dehydrogenase activity. The chitin, chitin-CaCO3, and porous chitin-CaCO3 scaffolds were all found to facilitate cell attachment. Hemocyanin dip-coating of these scaffolds led to increased initial cell adhesion, enhanced proliferation, and osteogenic differentiation. Since the hemocyanin loading of the scaffolds was impaired by sterilization by gamma-irradiation (as required for biomedical applications), the hemocyanin loading was performed on previously sterilized scaffolds. All scaffolds facilitated osteogenic differentiation of osteoblasts, with the highest cell ALP-activity being found on hemocyanin-modified porous chitin-CaCO3 scaffolds. Thus, chitin-hemocyanin scaffolds enhanced the initial stages of bone cell development and could serve as promising biomaterials for bone regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据