4.5 Article

3D-engineered GelMA conduit filled with ECM promotes regeneration of peripheral nerve

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.36859

关键词

3D bioprint; chemical cross-link; ECM; GelMA; nerve repair

资金

  1. Key Science and Technology Development Plan of Jiangyin [JYKJ3382]
  2. Jiangsu Provincial Key Research and Development Program [BE2016010-2]

向作者/读者索取更多资源

Autologous transplantation remains the golden standard for peripheral nerve repair. However, many drawbacks, such as the risk of reoperation or nerve injury remain associated with this method. To date, commercially available artificial nerve conduits comprise hollow tubes. By providing physical guiding and biological cues, tissue engineered conduits are promising for bridging peripheral nerve defects. The present study focuses on the preparation of artificial composite nerve conduits by 3D bio-printing. 3D-printed molds with a tubular cavity were filled with an Engelbreth-Holm-Swarm (EHS) Hydrogel mimicking the extracellular matrix (ECM) basement membrane. Chemically cross-linked gelatin methacryloyl (GelMA) was used to form the conduit backbone, while EHS Hydrogels improved nerve fiber growth while shortening repair time. Statistical significant difference had been found between the blank conduit and the composite conduit group on compound muscle action potential after 4 months. On the other hand, results between the composite conduit group and the autograft group were of no statistical differences. All results above showed that the composite conduit filled with EHS Hydrogel can promote the repair of peripheral nerve and may become a promising way to treat peripheral nerve defects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据