4.7 Article

Focused ion beam-induced displacive phase transformation from austenite to martensite during fabrication of quenched and partitioned steel micro-pillar

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 812, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2019.152061

关键词

Quenched and partitioned steel; Micro-pillar compression; Retained austenite; Martensitic transformation; Focused ion beam

资金

  1. Intramural NIST DOC [9999-NIST] Funding Source: Medline

向作者/读者索取更多资源

We report evidence of a displacive phase transformation from retained austenite to martensite during preparation of quenched and partitioned steel micro-pillars by using a focused ion beam (FIB) technique. The BCC phase produced by the FIB damage was identified as martensite. The invariant-plane strain surface relief associated with the martensitic transformation was observed in the retained austenite phase immediately after a FIB scan of the surface with the Ga+ ion beam. Use of a low acceleration voltage appears to lower the probability of the phase transformation, while a decrease of the acceleration voltage will result in an increase of the total milling time required to prepare a micro-pillar. This report addresses challenges related to the preparation of austenite micro-pillars by a conventional FIB technique. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据