4.5 Article

Preparation and performance of modified expanded graphite/eutectic salt composite phase change cold storage material

期刊

INTERNATIONAL JOURNAL OF REFRIGERATION
卷 110, 期 -, 页码 178-186

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijrefrig.2019.10.008

关键词

Eutectic salt; Modified expanded graphite; Composite PCM; Cold energy storage

资金

  1. National Natural Science Foundation of China [U1507201]
  2. Guangdong-Hong Kong Joint Innovation projects [2016A050503020]

向作者/读者索取更多资源

Cold energy storage technologies using phase change materials (PCM) have received increasing attention these years. In this work, we develop a novel kind of composite PCM using modified expanded graphite (MEG) to adsorb K2HPO4 center dot 3H(2)O-NaH2PO4 center dot 2H(2)O-Na2S2O3 center dot 5H(2)O-H2O eutectic salt by impregnation method. Within 120 min, the adsorption capacity of MEG for eutectic salt is 75.33% higher than that of unmodified expanded graphite (EG). The composite PCM has a phase change temperature of -5.30 degrees C, a large latent heat of 161.8 kJ kg(-1), and a low supercooling degree of 1.83 degrees C. The thermal conductivity of the composite PCM is 13.3 times as large as that of the eutectic salt. Moreover, the thermal cycle tests demonstrated excellent thermal reliability. These outstanding thermal properties endow K2HPO4 center dot 3H(2)O-NaH2PO4 center dot 2H(2)O-Na2S2O3 center dot 5H(2)O-H2O eutectic salt/MEG composite PCM with broad application prospects in the fields of beer industry, air conditioning refrigeration, refrigerator refrigeration and cold chain logistics. (C) 2019 Elsevier Ltd and IIR. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Review Thermodynamics

Review of different temperatures for biopreservation

Shuling Guo, Ankuo Zhang

Summary: Low-temperature biopreservation is commonly used for medication storage to prolong their shelf life. However, cryo-injury can occur during cryopreservation, making it crucial to find a way to achieve long-term biopreservation without causing harm. The optimal storage temperature for different biomaterials should be investigated to improve storage efficiency. This review discusses the mechanisms of cryo-injury and biopreservation, as well as the reasons for storing biological tissues at various temperature zones. It provides valuable insights for the development of biostorage technology.

INTERNATIONAL JOURNAL OF REFRIGERATION (2024)

Article Thermodynamics

Pseudo-optimum geometries for 1-100 ton spool compressors with low-GWP refrigerants

M. Mohsin Tanveer, Craig R. Bradshaw, Joe Orosz, Greg Kemp

Summary: This study investigates the optimal geometric parameters for a spool compressor using simulation models, and the results indicate that a eccentricity ratio of 0.75 and L/D ratios between 1-1.5 can maximize the volumetric and isentropic efficiencies.

INTERNATIONAL JOURNAL OF REFRIGERATION (2024)

Article Thermodynamics

Effects of second-stage active phase shifter on the inter-stage refrigeration capacity of a Stirling/pulse tube cryocooler

Kongkuai Ying, Zhenhua Jiang, Wenting Wu, Jinjian Chu, Shaoshuai Liu, Yinong Wu

Summary: The Stirling/pulse tube cryocooler (SPC) is a highly efficient and long-lasting cryocooler for space applications. It has the ability to adjust the inter-stage refrigeration capacity dynamically by controlling the Stirling displacer in the first stage. This paper proposes an SPC with a second-stage active phase shifter (APS) that can control the phase difference at the second-stage hot end in real time. The experimental results show that the SPC with the APS can provide refrigeration capacity at different temperatures, with a minimum temperature of 13.5K.

INTERNATIONAL JOURNAL OF REFRIGERATION (2024)

Article Thermodynamics

Optimum pressure control with three controllable ejectors of a CO2 multi-ejector refrigeration system

Ligeng Li, Hua Tian, Kai Liu, Yibo Wu, Xuan Wang, Xingyu Liang, Gequn Shu

Summary: This study focuses on improving the performance of carbon dioxide refrigeration systems by introducing a multi-ejector design with three controllable ejectors. Experimental analysis shows that the system's performance can be significantly improved by adopting an optimum pressure control strategy under different operating conditions.

INTERNATIONAL JOURNAL OF REFRIGERATION (2024)

Article Thermodynamics

A fast method for the calculation of refrigerant thermodynamic properties in a refrigeration cycle

Joseph Al Khoury, Rabih Al Haddad, Ghiwa Shakrina, Christelle Bou Malham, Haytham Sayah, Chakib Bouallou, Maroun Nemer

Summary: This study investigates two implementation methods for calculating refrigerant thermodynamic properties and compares their performance. The results show that the implicit fitting method significantly speeds up simulation time and offers greater flexibility for modeling complex energy systems.

INTERNATIONAL JOURNAL OF REFRIGERATION (2024)

Article Thermodynamics

Solar adsorption refrigeration system: Comparison between equilibrium, universal and transient model

Mariella Mateo-Villanueva, Rodolfo Echarri

Summary: This article details three models of different complexity levels for predicting the cold production of a solar cooling device and compares their advantages and disadvantages. The results show that the transient model underestimates the cold generation, while the equilibrium model and universal model overestimate it. The transient model is a useful tool for analyzing the impact of different variables in a solar adsorption refrigeration system, while the simpler models can be used for preliminary design and feasibility studies.

INTERNATIONAL JOURNAL OF REFRIGERATION (2024)

Article Thermodynamics

A novel spherical micro-absorber for dehumidification systems

Amin M. Elsafi, Majid Bahrami

Summary: The novel spherical micro-absorbers offer high sorption capacity and surface-to-volume ratios, solving issues such as solution carryover and corrosion associated with conventional absorbers.

INTERNATIONAL JOURNAL OF REFRIGERATION (2024)