4.7 Article

Deriving a Global and Hourly Data Set of Aerosol Optical Depth Over Land Using Data From Four Geostationary Satellites: GOES-16, MSG-1, MSG-4, and Himawari-8

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2019.2944949

关键词

Aerosols; Monitoring; Geostationary satellites; Remote sensing; Earth; Optical sensors; Aerosol optical depth (AOD); geostationary satellites; Geostationary Operational Environmental Satellite (GOES-16); Himawari-8; Meteosat Second Generation (MSG-1); MSG-4

资金

  1. National Natural Science Foundation of China (NSFC) [41871260]
  2. Ministry of Science and Technology (MOST) of China [2016YFC0200505, 2016YFA0600302]

向作者/读者索取更多资源

Due to the limitations in the number of satellites and the swath width of satellites (determined by the field of view and height of satellites), it is impossible to monitor global aerosol distribution using polar orbiting satellites at a high frequency. This limits the applicability of aerosol optical depth (AOD) data sets in many fields, such as atmospheric pollutant monitoring and climate change research, where a high-temporal data resolution may be required. Although geostationary satellites have a high-temporal resolution and an extensive observation range, three or more satellites are required to achieve global monitoring of aerosols. In this article, we obtain an hourly and global AOD data set by integrating AOD data sets from four geostationary weather satellites [Geostationary Operational Environmental Satellite (GOES-16), Meteosat Second Generation (MSG-1), MSG-4, and Himawari-8]. The integrated data set will expand the application range beyond the four individual AOD data sets. The integrated geostationary satellite AOD data sets from April to August 2018 were validated using Aerosol Robotic Network (AERONET) data. The data set results were validated against: the mean absolute error, mean bias error, relative mean bias, and root-mean-square error, and values obtained were 0.07, 0.01, 1.08, and 0.11, respectively. The ratio of the error of satellite retrieval within +/-( $0.05+ 0.2\times $ AOD(AERONET)) is 0.69. The spatial coverage and accuracy of the MODIS/C61/AOD product released by NASA were also analyzed as a representative of polar orbit satellites. The analysis results show that the integrated AOD data set has similar accuracy to that of the MODIS/AOD data set and has higher temporal resolution and spatial coverage than the MODIS/AOD data set.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据