4.7 Article

Temperature measurement of stored biomass of different types and bulk densities using acoustic techniques

期刊

FUEL
卷 257, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2019.115986

关键词

Biomass; Temperature measurement; Characteristic factor; Acoustic sensor; Bulk density

资金

  1. National Natural Science Foundation of China [61973115]
  2. Fundamental Research Funds for the Central Universities [2019MS021]
  3. China Scholarship Council
  4. Lijun Zheng at North China Electric Power University

向作者/读者索取更多资源

The internal temperature of stored biomass needs to be measured to suppress the possible self-ignition at biomass-fired power stations. Acoustic sensing has been proven to be a promising approach to measuring the temperature of stored wood pellets online and non-intrusively. In such a temperature measurement system, a characteristic factor is defined to derive the sound speed from measured time of flight of sound waves. The characteristic factor is updated based on its experimental relationship with the biomass temperature during temperature measurement. When the type, particle size, particle density and bulk density of stored biomass change, whether the relationship between the characteristic factor and biomass temperature needs to be recalibrated needs investigation. Therefore, the relationship between the characteristic factor and biomass property is modelled using the empirical equation of Miki. Then the model is used to analyse the impact of the particle size, particle density and bulk density of stored biomass on the relationship. An acoustic sensing system is constructed to investigate the influence of bulk density for different types of biomass. The system is also applied to measure the temperature of four biomass fuels, including wood blocks, wood pellets, wood chips, and wheat straws. Results show that the relative error of temperature measurements for the four types of biomass is within 3.5%, 5.7%, 6.8% and 2.5%, respectively, over the temperature range from 22.1 degrees C to 74.2 degrees C. The relationship between the characteristic factor and biomass temperature should be re-established for different types of biomass and different particle size distributions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据