4.7 Article

A novel approach for energy and mass transfer characteristics in wet cooling towers associated with vapor-compression air conditioning system by using MgO and TiO2 based H2O nanofluids

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 204, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2019.112289

关键词

Cooling tower; Nanofluids; TiO2; MgO; Filling; Air conditioning

向作者/读者索取更多资源

In hot weather, the performance attributes of the refrigeration cycles associated with cooling towers drop pointedly, and thus, the energy consumption excesses in addition to more troubles start to occur. Improve the cooling tower performance before the cooled fluid enters the condenser of the vapor compression air conditioning system (VCACS) can enhance the refrigeration cycle performance, lowering operating and maintenance cost, conserve the environment, and consequently save consumed energy. In this research, the experimental work on the performance-enhancing of a central air-conditioning utilizing cooling tower is presented under an enormous range of design and operating conditions. The purpose is to investigate the trace of several design parameters such as; nanoparticle concentration ratios, nanoparticle type, filling type, filling sheet spacing and sprayer angle whereas the operation parameters as; working fluid flow rate and air velocity on the performance characteristics for the VCACS. Two nanomaterial types being contemplated are MgO and TiO2 at varied concentrations of 0.1, 0.5, and 1.0% wt. It is found that the using of spiral sprayer with a spray angle of 90 degrees had an effect of 106% and a 76.5% increase on the cooling tower effectiveness in comparing with a spray angle of 30 degrees, and 150 degrees, respectively. The maximum overall system performance index is observed at PVC fill, beta = 12 mm, a nanoparticle of MgO based water, phi = 1%, and theta = 90 degrees. Correlations of Ka. V-p/(m) over dot(f) and e are predicted with its deviations using DataFit software based on the obtained experimental data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据