4.7 Article

Can movable PCM-filled TES units be used to improve the performance of PV panels? Overview and experimental case-study

期刊

ENERGY AND BUILDINGS
卷 210, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2019.109743

关键词

Photovoltaic performance; Phase change material; PV/PCM system; Temperature regulation; Outdoor experiment

资金

  1. FEDER funds through COMPETE 2020 - POCI
  2. FCT [POCI-01-0145-FEDER-016750 | PTDC/EMS-ENE/6079/2014]

向作者/读者索取更多资源

This paper provides an overview on how phase change materials (PCMs) can be used for the thermal regulation of photovoltaic (PV) devices, and describes an experimental apparatus to assess whether the performance of 250 W STC-rated commercial polycrystalline silicon PV panels can be improved by placing movable thermal energy storage (TES) units filled with the free-form PCM RT 22 HC on the panels' back. The outdoor apparatus is located at Coimbra, Portugal. Three identical PV panels were separately installed and individually monitored: one panel was taken as reference; the other two were considered together with a TES unit each with horizontally and vertically oriented cavities, PV/PCM1 and PV/PCM2 systems, respectively. The time evolutions of the temperature of the PV panels were compared with each other to analyse the possible thermal regulation potential of the TES units. The time evolution of the power output was also assessed to compare the efficiency of the different systems. Finally, the energy produced per day by each system was evaluated. The results showed that the PV operating temperature has increased ca. 16-21 degrees C and 14-18 degrees C in the PV/PCM1 and PV/PCM2 systems, respectively, in comparison with the reference PV panel (at peak time). Moreover, the daily energy produced by the PV panel of the PV/PCM1 and PV/PCM2 systems was, respectively, 3.3-6.5% and 3.3-6.0% lower than that produced by the reference PV panel during the measured short-term summer operation period. Therefore, it was concluded that the movable TES units have a negative impact on the performance of the PV/PCM systems, and that a PCM with a higher phase change temperature must be chosen for Mediterranean climate. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据