4.7 Article

Steam injected Humphrey cycle for gas turbines with pressure gain combustion

期刊

ENERGY
卷 188, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2019.116020

关键词

Pressure gain combustion; Humphrey cycle; Steam injection; Gas turbine; Emissions; Thermodynamic analysis

资金

  1. Deutsche Forschungsgemeinschaft(DFG) as part of the Collaborative Research Center Substantial efficiency increase in gas turbines through direct use of coupled unsteady combustion and flow dynamics [SFB 1029]

向作者/读者索取更多资源

Gas turbines are a mature technology and any increase in their efficiency comes at high R&D cost. Pressure Gain Combustion (PGC) has emerged as a concept to significantly improve their efficiency. Technically, PGC is realized through detonative combustion or approximations of constant volume combustion. The latter include pulsed resonant combustion and shockless explosion combustion. Detonation combustion is typically realized as pulsed or rotating detonation combustion. Gas turbine processes with PGC are modeled with the Humphrey or the ZND cycle. Most thermodynamic studies focus on the basic gas turbine cycle with PGC. The current work extends this scope by presenting a thermodynamic analysis of the steam injected Humphrey cycle. Steam injected gas turbines have several advantages that complement these of PGC. Steam injection can reduce NOx emissions and can be used in PGC gas turbine cycles to maximize combustor pressure gain. The present work applies 0-D thermodynamic modeling to compare the thermal efficiency of the Humphrey-STIG cycle to that of the JouleSTIG cycle. An optimum method to realize heat recuperation through steam injection in a Humphrey cycle is defined. The work concludes by defining Humphrey-STIG cycle configuration that result in realistic lengths of shockless explosion combustors. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据