4.5 Article

Three-Dimensional Thermal Modeling of Internal Shorting Process in a 20Ah Lithium-Ion Polymer Battery

期刊

ENERGIES
卷 13, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/en13041013

关键词

lithium-ion battery; thermal abuse; internal shorting; thermal modeling; safety; mini-channel cooling

向作者/读者索取更多资源

To better address the safety issues of a lithium-ion battery, understanding of its internal shorting process is necessary. In this study, three-dimensional (3D) thermal modeling of a 20 Ah lithium-ion polymer battery under an internal shorting process is performed. The electrochemical thermal coupling scheme is considered, and a multi-scale modeling approach is employed. An equivalent circuit model is used for characterizing the subscale electrochemical behaviors. Then, at the cell scale, the electrical potential field and thermal field are resolved. For modeling the internal shorting process, a block of an internal short is directly planted inside the lithium-ion battery. Insights of the temperature evolutions and 3D temperature distributions are drawn from the simulations. The effects of shorting resistance, through-plane thermal conductivity, and mini-channel cold-plate cooling are investigated with the simulations. A large amount of heat generation by a small shorting resistance and highly localized temperature rise are the fundamental thermal features associated with the internal shorting process. The through-plane thermal conductivity plays an important role in the maximum temperature evolutions inside the battery cell, while the external cooling condition has a relatively weak effect. But the cold plate cooling can benefit lithium-ion battery safety by limiting the high temperature area in the internal shorting process through heat spreading.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据