4.8 Article

Effect of hot-water extraction (HWE) severity on bleached pulp based biorefinery performance of eucalyptus during the HWE-Kraft-ECF bleaching process

期刊

BIORESOURCE TECHNOLOGY
卷 181, 期 -, 页码 183-190

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2015.01.055

关键词

Biorefinery performance; Hot-water extraction (HWE); Kraft pulping; ECF bleaching; Eucalyptus

资金

  1. National Natural Science Foundation of China [31300495]
  2. Ministry of Education of China [20123515120018]
  3. Fujian Provincial Department of Education [JK2012015]
  4. Department of Forestry (Min Forestry)
  5. Department of Science and Technology [2013J05041, 2014J05028]
  6. Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology, Zhejiang Sci-Tech University [YR2013011]
  7. Key Laboratory of biofuels at Qingdao Institute of Bioenergy, Chinese Academy of Sciences [CASKLB201308]

向作者/读者索取更多资源

The effectiveness of a biorefinery based on an HWE-Kraft-ECF bleaching process and the end use of pulp was systematically evaluated. Using a P-factor of 198, nearly 30% of xylan-based sugars were recovered. The resulting pulp and paper properties were found to be comparable with the control. A maximum xylan-based sugar recovery of nearly 50% was achieved at a P-factor of 738. Although the strength of this P-factor induced handsheet was lower than that of the control by about 20%, the corresponding pulp was sufficient for dissolving pulp application. However, once the P-factor rose above 1189, hemicellulose sugars were significantly degraded into furans; pulp and paper properties were also deteriorated due to cellulose degradation, lignin deposition and condensation. Thus, considering the different end use of pulps, the performance of an HWE-based biorefinery could be balanced by its HWE severity. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Ceramics

Paper based self-powered UV photodiode: Enhancing photo-response with AZO back-field layer

Yinan Li, Shuangxi Nie, Liulian Huang, Lihui Chen, Yonghao Ni, Qinghong Zheng

Summary: In this study, a self-powered UV photodiode on a green substrate was successfully developed using a highly conductive AZO film and different electrode designs. The paper-based Schottky photodiodes operated without external power, with the Au-ZnO-AZO-Al structure showing improved response and faster speed compared to the Au-ZnO-Al structure. The enhancement in performance was attributed to the strong electric field in the ZnO-AZO n-n+ junction and the favorable ohmic contact between AZO and Al electrodes.

CERAMICS INTERNATIONAL (2023)

Article Engineering, Environmental

A recyclable, up-scalable and eco-friendly radiative cooling material for all-day sub-ambient comfort

Haodong Sun, Fengjie Tang, Qunfeng Chen, Linmin Xia, Chenyue Guo, He Liu, Xinpeng Zhao, Dongliang Zhao, Liulian Huang, Jianguo Li, Lihui Chen

Summary: Passive radiative cooling materials offer all-day thermal comfort without energy consumption by reflecting solar radiation and emitting heat into the 3 K universe. However, conventional materials have non-recyclable complex structures and unsustainable polymers, leading to resource waste and environmental issues. This study presents a low-cost, scalable, and eco-friendly radiative cooling material called cooling paper, made from delignified cellulose fibers and nano-sized hydroxyapatite (HA). The resulting paper can be easily recycled and deconstructed to recover cellulose fibers and HA, which can be reused to prepare secondary products with comparable performance. The recyclable cooling paper shows a temperature drop of 6-8.8 degrees C under direct solar radiation and an average cooling energy saving of 29% in buildings across China, indicating its promising potential for sustainable energy-efficient buildings.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Physical

Rarely negative-thermovoltage cellulose ionogel with simultaneously boosted mechanical strength and ionic conductivity via ion-molecular engineering

Qunfeng Chen, Binbin Cheng, Zequn Wang, Xuhui Sun, Yang Liu, Haodong Sun, Jianwei Li, Lihui Chen, Xuhai Zhu, Liulian Huang, Yonghao Ni, Meng An, Jianguo Li

Summary: Excellent mechanical strength and conductivity are achieved in a cellulose ionogel via ZnCl2 doping. The Zn2+-cellulose engineering strategy produces a confined nanostructure that supports efficient transport of small anions and allows the ionogel to convert waste heat into electricity. This ion-molecular engineering strategy offers unprecedented freedom for developing adaptable gel materials.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Applied

Robust cellulose-based hydrogel marbles with excellent stability for gas sensing

Na Li, Hongying Wanyan, Shengchang Lu, He Xiao, Min Zhang, Kai Liu, Xiuliang Li, Bihui Du, Liulian Huang, Lihui Chen, Yonghao Ni, Hui Wu

Summary: Cellulose-based liquid marbles have been improved for stability and biocompatibility by incorporating biocompatible cellulose acetate particles and 3-allyloxy-2-hydroxy-propyl-cellulose (AHP-cellulose), resulting in cellulose-based hydrogel marbles with superior mechanical properties. These hydrogel marbles exhibit excellent stability and can bounce to a much higher height compared to liquid marbles. Furthermore, they are capable of monitoring ammonia with a low detection limit, making them suitable for gas sensing in chemical and environmental engineering.

CARBOHYDRATE POLYMERS (2023)

Article Biochemistry & Molecular Biology

UV and IR dual light triggered cellulose-based invisible actuators with high sensitivity

Yinan Li, Jun Wang, Jiajia Guo, Chenglong Fu, Liulian Huang, Lihui Chen, Yonghao Ni, Qinghong Zheng

Summary: Transparent cellulose-based UV-absorbing films and drive actuators have been successfully prepared in this study. The actuators exhibit high sensitivity to both infrared and ultraviolet light and demonstrate excellent actuation performance. They have potential applications in bionic devices, such as simulating insects, smart doors, and excavator arms.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2023)

Article Chemistry, Applied

A catechol-containing dialdehyde cellulose adhesive with strong adhesion and biocompatibility

Shuai Bian, Yong Chen, Xiaohua Huang, Yan Guo, He Xiao, Min Zhang, Kai Liu, Liulian Huang, Lihui Chen, Hui Wu

Summary: In this paper, a catechol-containing dialdehyde carboxymethyl cellulose (DCMC-DA) adhesive with strong adhesion and biocompatibility was reported. The lap shear strength of DCMC-DA on porcine skin and wood were 0.14 MPa and 4.38 MPa, respectively, which increased by 350% and 694% as compared with that of CMC. Moreover, NIH 3T3 cell tests demonstrated that DCMC-DA has good biocompatibility to promote cell proliferation. The DCMC-DA with strong adhesion and biocompatibility has great potential as a green and environmentally friendly adhesive in the fields of wood and biomedicine.

REACTIVE & FUNCTIONAL POLYMERS (2023)

Article Polymer Science

Lignocelluloses-Based Furan-Acetone Adducts as Wood Adhesives for Plywood Production

Lizhen Huang, Wenchang Sun, Li Shuai, Xiaolin Luo, Jing Liu

Summary: In this article, furan-acetone adducts were synthesized from lignocellulosic biomass, which can be used as adhesives with the addition of phosphoric acid. The addition of 5 wt% diphenylmethane diisocyanate (MDI) as a crosslinking agent resulted in plywood with wet and dry bonding strength that met the minimum requirement. This research provides a new way for the preparation of aldehyde-free green wood adhesives and the utilization of woody biomass.

POLYMERS (2023)

Article Chemistry, Multidisciplinary

Hierarchically Porous Cellulose Membrane via Self-Assembly Engineering for Ultra High-Power Thermoelectrical Generation in Natural Convection

Haodong Sun, Fengjie Tang, Yinghao Bi, Hao Sun, Liulian Huang, Feng Jiang, Lihui Chen, Jianguo Li

Summary: This study proposes a cost-effective and sustainable cellulose membrane that can achieve high temperature gradients during natural convection, leading to increased output voltage and power density of thermoelectric modules.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Applied

Solution-processable, robust and sustainable cooler via nano-structured engineering

Haodong Sun, Yuwen Chen, Wenchao Zeng, Fengjie Tang, Yinghao Bi, Qingxin Lu, Ajoy Kanti Mondal, Liulian Huang, Lihui Chen, Jianguo Li

Summary: We designed a robust and eco-friendly cooler by assembling nano cellulose and inorganic nanoparticles using a scalable solution-processable strategy. The cooler features a brick-and-mortar structure, with the nano cellulose forming the interwoven framework and the inorganic nanoparticles uniformly distributed in the skeleton, contributing to high mechanical strength and flexibility. It also exhibits high solar reflectance and mid-infrared emissivity, resulting in a significant temperature drop in outdoor environments.

CARBOHYDRATE POLYMERS (2023)

Article Thermodynamics

Designing flexible CNT/CNF films with highly light-absorbing for solar energy harvesting: Seawater desalination, photothermal power generation and light- driven actuators

Yinan Li, Jun Wang, Chenglong Fu, Liulian Huang, Lihui Chen, Yonghao Ni, Qinghong Zheng

Summary: Green cellulose-based solar light capturing composite films consisting of carbon nanotubes (CNT) and cellulose nanofibrils (CNF) with high photothermal conversion performance were developed. The composite films showed excellent mechanical properties due to the strong electrostatic interactions between CNFs and cationic-modified CNTs. The effect of CNT/CNF ratio on the photothermal conversion capacity and coefficient of thermal expansion (CTE) was investigated.

ENERGY CONVERSION AND MANAGEMENT (2023)

Article Multidisciplinary Sciences

Bonding wood with uncondensed lignins as adhesives

Guangxu Yang, Zhenggang Gong, Xiaolin Luo, Lihui Chen, Li Shuai

Summary: A method for preparing lignin-based wood adhesives from biomass has been developed, which can replace traditional synthetic adhesives. Plywood with superior performances can be produced using these adhesives, making them promising alternatives in various industries.

NATURE (2023)

Article Engineering, Environmental

Phenol-assisted depolymerisation of condensed lignins to mono-/ poly-phenols and bisphenols

Zhenggang Gong, Guangxu Yang, Liulian Huang, Lihui Chen, Xiaolin Luo, Li Shuai

Summary: An efficient phenol-assisted depolymerisation (PAD) process was developed to selectively cleave methylene linkages in condensed lignins. Phenol served as a solvent to dissolve lignin and also scavenged methylene linkages to facilitate the depolymerisation. The PAD process achieved higher yields of lignin monomers and bisphenols compared to existing depolymerisation methods, and the residual polyphenols could be used in adhesive synthesis for plywood applications.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Multidisciplinary

Hydrodeoxygenation of condensed lignins followed by acid-mediated methylolation enables preparation of lignin-based wood adhesives

Guangxu Yang, Zhenggang Gong, Bei Zhou, Xiaolin Luo, Jing Liu, Guanben Du, Chengke Zhao, Li Shuai

Summary: This study presents a two-step strategy to produce lignin-based wood adhesives using industrially available technical lignins. The lignin-formaldehyde adhesive synthesized through hydrodeoxygenation and acid-mediated methylolation exhibits lighter color and superior adhesion performance compared to traditional LPF resins.

GREEN CHEMISTRY (2023)

Article Agricultural Engineering

Biobased lignin-blockers enable efficient production of glucose from lignocelluloses

Guangxu Yang, Zhenggang Gong, Lizhen Huang, Xiaolin Luo, Li Shuai, Jing Liu

Summary: This study developed new plant proteins, such as corn germ and green rapeseed proteins, as lignin-blockers to improve cellulose accessibility in lignocellulosic substrates. These plant proteins were effective in overcoming negative lignin effects and achieving robust cellulose enzymatic conversion in substrates with high cellulose accessibility. However, they showed insignificant promotion effects on substrates with low cellulose accessibility.

INDUSTRIAL CROPS AND PRODUCTS (2023)

Article Chemistry, Physical

Engineering biomimetic cellulose fabric for sustainably and durably cooling human body

Jianguo Li, Fengjie Tang, Yinghao Bi, Haodong Sun, Liulian Huang, Lihui Chen

Summary: This study presents a new method to prepare sustainable, robust, customizable, and scalable cooling cellulose fabric through the fibrillation of cellulosic fibers and in-situ synthesis of SiO2 nanoparticles. The developed fabric reflects solar light effectively and emits mid-infrared light, leading to a significant cooling effect on the human body in high-temperature summer. Furthermore, this fabric demonstrates durable and effective cooling performance after enduring mechanical washing and exposure to air.

NANO ENERGY (2023)

Article Agricultural Engineering

Carbamazepine facilitated horizontal transfer of antibiotic resistance genes by enhancing microbial communication and aggregation

Yinping Xiang, Meiying Jia, Rui Xu, Jialu Xu, Lele He, Haihao Peng, Weimin Sun, Dongbo Wang, Weiping Xiong, Zhaohui Yang

Summary: This study investigated the impact of the non-antibiotic pharmaceutical carbamazepine on antibiotic resistance genes (ARGs) during anaerobic digestion. The results showed that carbamazepine induced the enrichment of ARGs and increased the abundance of bacteria carrying these genes. It also facilitated microbial aggregation and intercellular communication, leading to an increased frequency of ARGs transmission. Moreover, carbamazepine promoted the acquisition of ARGs by pathogens and elevated their overall abundance.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

A review of microbial responses to biochar addition in anaerobic digestion system: Community, cellular and genetic level findings

Weixin Zhao, Tianyi Hu, Hao Ma, Dan Li, Qingliang Zhao, Junqiu Jiang, Liangliang Wei

Summary: This review summarizes the effects and potential mechanisms of biochar on microbial behavior in AD systems. The addition of biochar has been found to promote microbial colonization, alleviate stress, provide nutrients, and enhance enzyme activity. Future research directions include targeted design of biochar, in-depth study of microbial mechanisms, and improved models.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

Advances in nitrogen removal and recovery technologies from reject water: Economic and environmental perspectives

Christina Karmann, Anna Magrova, Pavel Jenicek, Jan Bartacek, Vojtech Kouba

Summary: This review assesses nitrogen removal technologies in reject water treatment, highlighting the differences in environmental impacts and economic benefits. Partial nitritation-anammox shows potential for economic benefits and positive environmental outcomes when operated and controlled properly.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Layered double hydroxide loaded pinecone biochar as adsorbent for heavy metals and phosphate ion removal from water

Wei-Hao Huang, Ying-Ju Chang, Duu-Jong Lee

Summary: This study modified pinecone biochar with layered double hydroxide (LDH) to enhance its adsorption capacity for heavy metal and phosphate ions. The LDH-biochar showed significantly improved adsorption capacities for Pb2+ and phosphate, and a slight increase for Cu2+ and Co2+. The LDH layer enhanced the adsorption through various mechanisms.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Machine learning-based prediction of methane production from lignocellulosic wastes

Chao Song, Fanfan Cai, Shuang Yang, Ligong Wang, Guangqing Liu, Chang Chen

Summary: This paper developed a machine learning model to predict the biochemical methane potential during anaerobic digestion. Model analysis identified lignin content, organic loading, and nitrogen content as key attributes for methane production prediction. For feedstocks with high cellulose content, early methane production is lower but can be improved by prolonging digestion time. Moreover, lignin content exceeding a certain value significantly inhibits methane production.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Engineering of Yarrowia lipolytica as a platform strain for producing adipic acid from renewable resource

Sang Min Lee, Ju Young Lee, Ji-Sook Hahn, Seung-Ho Baek

Summary: This study successfully developed an efficient platform strain using Yarrowia lipolytica for the bioconversion of renewable resources into adipic acid, achieving a remarkable increase in production level.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Synergies of pH-induced calcium phosphate precipitation and magnetic separation for energy-efficient harvesting of freshwater microalgae

Sefkan Kendir, Matthias Franzreb

Summary: This study presents a novel approach using magnetic separation to efficiently harvest freshwater microalgae, Chlorella vulgaris. By combining pH-induced calcium phosphate precipitation with cheap natural magnetite microparticles, harvesting efficiencies up to 98% were achieved in the model medium.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Solvothermal liquefaction of orange peels into biocrude: An experimental investigation of biocrude yield and energy compositional dependency on process variables

Ishaq Kariim, Ji-Yeon Park, Wajahat Waheed Kazmi, Hulda Swai, In-Gu Lee, Thomas Kivevele

Summary: The impact of reaction temperature, residence time, and ethanol: acetone on the energy compositions and yield enhancement of biocrudes was investigated. The results showed that under appropriate conditions, biocrudes with high energy and low oxygen content can be obtained, indicating a high potential for utilization.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Enhancing nitrogen removal performance through intermittent aeration in continuous plug-flow anaerobic/aerobic/anoxic process treating low-strength municipal sewage

Xiyue Zhang, Xiyao Li, Liang Zhang, Yongzhen Peng

Summary: Intermittent aeration is an innovative approach to enhance nitrogen removal in low carbon-to-nitrogen ratio municipal sewage, providing an efficient strategy for the continuous plug-flow AOA process.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Mechanism of magnetite-assisted aerobic composting on the nitrogen cycle in pig manure

Xu Yang, Mahmoud Mazarji, Mengtong Li, Aohua Li, Ronghua Li, Zengqiang Zhang, Junting Pan

Summary: This study investigated the impact of magnetite on the nitrogen cycle of pig manure biostabilisation. The addition of magnetite increased N2O emissions and decreased NH3 emissions during composting. It also increased the total nitrogen content but should be considered for its significant increase in N2O emissions in engineering practice.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

Recent advances in microalgal production, harvesting, prediction, optimization, and control strategies

Ty Shitanaka, Haylee Fujioka, Muzammil Khan, Manpreet Kaur, Zhi-Yan Du, Samir Kumar Khanal

Summary: The market value of microalgae has exponentially increased in the past two decades, thanks to their applications in various industries. However, the supply of high-value microalgal bioproducts is limited due to several factors, and strategies are being explored to overcome these limitations and improve microalgae production, thus increasing the availability of algal-derived bioproducts in the market.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Efficient supply with carbon dioxide from flue gas during large scale production of microalgae: A novel approach for bioenergy facades

Martin Kerner, Thorsten Wolff, Torsten Brinkmann

Summary: The efficiency of using enriched CO2 from flue gas for large-scale production of green microalgae has been studied. The results show that the use of membrane devices and static mixers can effectively improve the CO2 recovery rate and maintain the suitable pH and temperature during cultivation, achieving a more economical and sustainable microalgae production.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation

Rui Ma, Ji Li, Rd Tyagi, Xiaolei Zhang

Summary: This review summarizes the microorganisms capable of using CO2 and CH4 to produce PHAs, illustrating the production process, factors influencing it, and discussing optimization techniques. It identifies the challenges and future prospects for developing economically viable PHAs production using GHGs as a carbon source.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Contribution of zeolite to nitrogen retention in chicken manure and straw compost: Reduction of NH3 and N2O emissions and increase of nitrate

Bing Wang, Peng Zhang, Xu Guo, Xu Bao, Junjie Tian, Guomin Li, Jian Zhang

Summary: The addition of zeolite in the co-composting of chicken manure and straw significantly reduced the emissions of ammonia and N2O, and increased the nitrate content. Zeolite also promoted the abundance of nitrification genes and inhibited the expression of denitrification genes.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Exploring advanced phycoremediation strategies for resource recovery from secondary wastewater using a large scale photobioreactor

Rohit Dey, Franziska Ortiz Tena, Song Wang, Josef Martin Messmann, Christian Steinweg, Claudia Thomsen, Clemens Posten, Stefan Leu, Matthias S. Ullrich, Laurenz Thomsen

Summary: This study investigated the operation of a 1000L microalgae-based membrane photobioreactor system for continuous secondary wastewater treatment. The research focused on a green microalgae strain called Desmodesmus sp. The study aimed to understand key trends and optimization strategies by conducting experiments in both summer and winter seasons. The findings showed that maintaining low cell concentrations during periods of light inhibition was beneficial for nutrient uptake rates. Effective strategies for enhancing algae-based wastewater treatment included cell mass recycling and adjusting dilution rates based on light availability.

BIORESOURCE TECHNOLOGY (2024)