4.7 Article

Experimental investigation of adhesive fillet size on barely visible impact damage in metallic honeycomb sandwich panels

期刊

COMPOSITES PART B-ENGINEERING
卷 184, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2019.107723

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. National Defense Canada
  3. Structural and Multidisciplinary Systems Design Group at Queen's University

向作者/读者索取更多资源

Aluminum hexagonal honeycomb panels are commonly used in the aerospace industry to reduce weight due to their high stiffness to mass ratio. The panels are commonly involved in incidents where they are dented in the out-of-plane direction which causes plastic deformation in the face-sheet and buckling collapse of the thin repeating cell-walls in the core. This paper investigates the responses to barely-visible-impact-damage (BVID) in aluminum honeycomb sandwich panels in the out-of-plane direction with attention to the structural adhesive. The structural adhesive forms a fillet shape between the face-sheet and the aluminum core during the curing process and in some cases can encompass over 50% of the honeycomb core thickness. The adhesive fillets become stiff after curing and are able to brace the thin metallic cell-walls and prevent buckling in sections of the core enclosed in adhesive. It was shown that larger fillets cause the damage to occur deeper in the core. Force-displacement data collected from quasi-static experiments showed that as the amount of adhesive used in honeycomb panels was increased, the peak force required to produce a specified maximum dent depth increased as well. Absorbed energy positively correlated with an increasing quantity of adhesive; showing improvements of up to 50% when comparing panels with the largest amount of adhesive and no adhesive. This paper provides relationships between the quantity of adhesive used to fabricate metallic honeycomb sandwich panels and the damage resistance and energy absorption under BVID conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据