4.8 Article

Enhancing Zn-Ion Storage Capability of Hydrated Vanadium Pentoxide by the Strategic Introduction of La3+

期刊

CHEMSUSCHEM
卷 13, 期 6, 页码 1568-1574

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cssc.201902659

关键词

high capacity; hydrated vanadium pentoxide; interplanar spacing; La3+; Zn ion batteries

资金

  1. National Natural Science Foundation of China [21802173, 21822509, U1810110]
  2. Natural Science Foundation of Guangdong Province [2018A030310301]
  3. Fundamental Research Funds for the Central Universities [19lgyjs35]
  4. National Synchrotron Radiation Laboratory (NSRL) [BL10B]

向作者/读者索取更多资源

Hydrated vanadium pentoxide (VO) cathodes with two-dimensional bilayer structures hold great potential for advanced aqueous Zn-ion batteries (ZIBs) construction, but their further application is impeded by the poor cycling stability. Herein, to address this issue and enhance the Zn ion storage capability, La3+ with a big radius was selected to finely tune their nanostructure. The strategic introduction of La3+ to VO led to the formation of LaVO4, which showed larger interplanar spacing, better electrical conductivity, and superior Zn-ion diffusion efficiency. These unique characteristics were beneficial in the (de)intercalation and the prevention of electrode degradation/collapse, thereby significantly strengthening the corresponding electrochemical performance. As a consequence, the cathode possessed a high specific capacity of 472.5 mAh g(-1) at a current density of 0.38 A g(-1) and displayed good rate performance, accompanied by enduring cycling stability (no decay after 2000 cycles). Besides, when equipped as an aqueous ZIB, it delivered an outstanding peak energy density of 341.9 Wh kg(-1) and a peak power density of 3.22 kW kg(-1), surpassing most VO-based energy-storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据