4.7 Article

Characterization of biocomposite using coconut oil impregnated biochar as latent heat storage insulation

期刊

CHEMOSPHERE
卷 236, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.06.239

关键词

Black carbon; Charcoal; Thermal energy storage; Phase change material; Latent heat storage insulation

资金

  1. Korea Institute of Energy Technology Evaluation and Planning(KETEP)
  2. Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea [20194010201850]
  3. Yonsei University [2018-22-0193]

向作者/读者索取更多资源

Objective of this research was to characterize properties of the latent heat storage biocomposite (LHSBC) as a novel material that can be employed as a latent heat storage insulation by using biochar. Biochars produced from waste material pine cone, pine saw dust, and paper mill sludge were vacuum impregnated with a bio-based phase change material (PCM), coconut oil, to prepare LHSBCs. In particular, this paper analyzed the chemical stability, latent heat storage performance, thermal conductivity, and thermal stability of LHSBCs based on results of fourier transform infrared spectroscopy (FFIR), differential scanning calorimetry (DSC), laser flash method and thermogravimetric analysis (TGA). As a result, the LHSBCs showed a maximum latent heat storage capacity of 74.6 J/g and a low thermal conductivity of 0.030 W/mK at the maximum, confirming that LHSBCs have a high latent heat storage capacity and thermal insulation performance. With a maximum specific heat of 1.69 J/gK, a high, sensible heat storage was confirmed. In addition, all LHSBCs were found to be thermally and chemically stable. The LHSBC could be employed as a material with good thermal insulation performance and heat storage characteristics. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据