4.7 Article

Caveats to the use of MTT, neutral red, Hoechst and Resazurin to measure silver nanoparticle cytotoxicity

期刊

CHEMICO-BIOLOGICAL INTERACTIONS
卷 315, 期 -, 页码 -

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cbi.2019.108868

关键词

Nanomaterials; Cellular viability; Alamar blue

资金

  1. collaborative multi-institutional Center for the Environmental Implications of Nanotechnology (CEINT) - U.S. National Science Foundation (NSF)
  2. Environmental Protection Agency (EPA) under NSF Cooperative Agreement [EF-0830093, DBI-1266252]
  3. National Institute of Environmental Health Sciences (NIEHS) [1R21ES026743]

向作者/读者索取更多资源

The extensive use of silver nanoparticles (AgNPs) in manufactured products will inevitably increase environmental exposure, highlighting the importance of accurate toxicity assessments. A frequent strategy to estimate AgNP cytotoxicity is to use absorbance or fluorescent-based assays. In this study we report that AgNPs - with or without surface functionalizations (polyvinyl pyrrolidone or gum arabic), and of different sizes (2-15 nm) - can interfere with the spectrometric quantification of different dyes commonly used in cytotoxicity assays, such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red (NR), Hoechst, and Resazurin. Some AgNP types caused more interference than others, which was dependent on the assay. Overall most AgNPs caused the direct reduction of MTT, as well as Hoechst and NR fluorescence quenching, and absorbed light at the same wavelength as NR. None of the AgNPs tested caused the direct reduction of Resazurin; however, depending on AgNP characteristics and concentration, they may still promote fluorescence quenching of this dye. Our results show that AgNPs with different size and coatings can interfere with spectroscopy-based assays to different degrees, suggesting that their cytotoxicity may be underestimated or overestimated. We suggest that when using any spectroscopy-based assay it is essential that each individual nanoparticle formulation be tested first for potential interferences at all intended concentrations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据